CA ACF2™ for z/ VM

Command and Diaghose Limiting

Guide
rl2 SP4

This Documentation, which includes embedded help systems and electronically distributed materials (hereinafter referred to as
the “Documentation”), is for your informational purposes only and is subject to change or withdrawal by CA at any time. This
Documentation is proprietary information of CA and may not be copied, transferred, reproduced, disclosed, modified or
duplicated, in whole or in part, without the prior written consent of CA.

If you are a licensed user of the software product(s) addressed in the Documentation, you may print or otherwise make
available a reasonable number of copies of the Documentation for internal use by you and your employees in connection with
that software, provided that all CA copyright notices and legends are affixed to each reproduced copy.

The right to print or otherwise make available copies of the Documentation is limited to the period during which the applicable
license for such software remains in full force and effect. Should the license terminate for any reason, it is your responsibility to
certify in writing to CA that all copies and partial copies of the Documentation have been returned to CA or destroyed.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CA PROVIDES THIS DOCUMENTATION “AS IS” WITHOUT WARRANTY OF ANY
KIND, INCLUDING WITHOUT LIMITATION, ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, OR NONINFRINGEMENT. IN NO EVENT WILL CA BE LIABLE TO YOU OR ANY THIRD PARTY FOR ANY LOSS OR DAMAGE,
DIRECT OR INDIRECT, FROM THE USE OF THIS DOCUMENTATION, INCLUDING WITHOUT LIMITATION, LOST PROFITS, LOST
INVESTMENT, BUSINESS INTERRUPTION, GOODWILL, OR LOST DATA, EVEN IF CA IS EXPRESSLY ADVISED IN ADVANCE OF THE
POSSIBILITY OF SUCH LOSS OR DAMAGE.

The use of any software product referenced in the Documentation is governed by the applicable license agreement and such
license agreement is not modified in any way by the terms of this notice.

The manufacturer of this Documentation is CA.

Provided with “Restricted Rights.” Use, duplication or disclosure by the United States Government is subject to the restrictions
set forth in FAR Sections 12.212, 52.227-14, and 52.227-19(c)(1) - (2) and DFARS Section 252.227-7014(b)(3), as applicable, or
their successors.

Copyright © 2013 CA. All rights reserved. All trademarks, trade names, service marks, and logos referenced herein belong to
their respective companies.

Contact CA Technologies

Contact CA Support

For your convenience, CA Technologies provides one site where you can access the
information that you need for your Home Office, Small Business, and Enterprise CA
Technologies products. At http://ca.com/support, you can access the following
resources:

®m Online and telephone contact information for technical assistance and customer
services

m Information about user communities and forums
® Product and documentation downloads
m CA Support policies and guidelines

m Other helpful resources appropriate for your product
Providing Feedback About Product Documentation

If you have comments or questions about CA Technologies product documentation, you
can send a message to techpubs@ca.com.

To provide feedback about CA Technologies product documentation, complete our
short customer survey which is available on the CA Support website at
http://ca.com/docs.

http://www.ca.com/support
mailto:techpubs@ca.com
http://ca.com/docs

Documentation Changes

The following documentation updates have been made to indicate support for z/VM
Version 6 Release 3.0:

. Command Models

m Control Statements

Contents

Chapter 1: Introduction 11
F X Lo 1T o ol RSP PR 11
REQUITEA REATINEG ...ttt ettt ettt et e st e et e sttt e bt e s b et e bt e s abe e e bbeeabe e e seesabeeesabeeaneeesnneenees 12
1]\ W o] [Tor= Yo T3 OO OO TP PSP 12
(07N U] o] o 1 4T o T OO OO PO PRROPRTOPRUPPRIN 12
COMMEANT NOTATION .etttii ittt sttt e st e s bt e e bt e s be e s beesabe e s beesabeesbaesabeesnbeesabeesbeesabeesnseesbaessnennss 12
Chapter 2: Rule Writing Guidelines 15
What IS ComMMaNd LIMITINE?veeiiiiee ettt ee et e e et e e e e bt e e e e bt e e e e tteeeeeasaeeesataeeeanssseesaasaaeesnsseaeassaeesnnseens 15
Components of Command and DiagnoSe LIMItiNGcocuuieiieriiiiiieiiee ettt ettt st et saee s snee e 16
ComMANd LIMITING RUIES ..cneeiiiiieiieee ettt sttt st e be e sttt s be e sab e s bt e s bt e e bt e s beeeneesabeeeneenane 16
ACF COMMEANGS .tiiiittteeeiieee et tee ettt e e ettt e ettt e e sbeeeeeateeeseusaeeesabbeeeaabeeesaasbeeesabbeeeenbeeesaasbeessabbeeeenbeeesansreeesasseaennn 16
COMMEANT IMIOTEIS ..ttt ettt ettt e st e st e e beesabe e s baesabaeebaesabeesabeesabaesnseesabaeenseeenbaeenseennss 17
CommaNd LIMItING JOUINAL ...eeiiiiiie ettt et e e et e e e ete e e e st e e e eteaeesabaaeeeatbeeeessaeesasseeeeansseaeanes 17
TranSPOSITION ROUTINESviiiiiiiiiiieie ettt s et e st e e s s e e e s e br e e e snr e e e s sare e e senreeesnnneas 18
Who Can Write Command LiIMIting RUIES?c..eeiuiiiiieiieet ettt sttt sttt st e st s e st esabeesanee s 19
Command Limiting and CP Special CoNSIAErationsccccuiiiiiiiiiei e e et et eree e et e e e e tae e e s raree e e sabreeeesraeesaraeas 19
BaSIiC RUIE SEE SEIUCTUIE ...ttt e s ettt e s bt e e e s a bt e e s e abeeeesabbeeeeaabbeeseabbeeesnbeeeennbaeeennnee 19
How Commands Are Validatedeii ittt ettt e s ettt e sab e e e s sab e e e s s bbeeesbbeeeenabeeeenanee 20
U1 T N VYo T o V- S 20
Matching ENVIroNmMENT CONCEPTuviieieiiiieciiee et te et e et e sttt e e st e e e e aae e e saaeeeesataeesensseesssseaeesnsteeeansseeesansneas 21
SYNTAX OF @ RUIE SEL ...ttt et e e e et e e e ette e e s tbe e e e ataeeeeasaeeesabaeeeastaeesaasaaeesasbeseannsaeesansanas 21
CONEIOl SEATEMENTS ettt ettt e st e e s bt e e s bt e e s sabt e e s easbeeesabbteeesabaeesensbeeesbbteessnbeeannanee 22
ACCESS ENVIFONMENTS ...ttt s et e e st e e e st e e e s emne e e s san et e s enreeesnnneessnnneeans 24
AACCESS POIIMISSIONS. ..ceeiiiiiieiiiee ettt e st e e et e e s et e e s b et e e e s bt e s ss et e e sabe e e s enr et e smnneeesaneeesenreeesannneeesneeeeann 26
(O] o1 aTo I\ - 1 = d I=Tol o] (o [0 L=y SR 27
RUIE MASKING EXAMIPIE ..veviieieieitieiee ettt ettt e e e e ettt e e e e e e e e s et b e e e e e e e e s astaaaeeaesesasbsaaaaeseesasssssnneaeesnnsnsens 28
Rules for Operands that Have NUMEIIC ValUBS.......ccocuiiii ittt ettt et e et e e e ta e e e e ara e e eanaeas 33
Rules for Operands That HAVe @ RANEE......cccuiii i cetes st sstte e st e e st e e st e e e s aee e s snaeeeesntaeeeesseeesnnnneas 34
Using Pseudo Operand Values in RUIES.........cuiii ittt s et e e st e e et e e s eneae e e snna e e e ennnaeesnnnneas 36
Rules for Commands With @ PASSWOITcoeuiiriiiiiieiiieeiee ettt ettt sttt saae e snteesaseenaeas 37
Rules for Storage TYPe COMMANGScccouiiiiieiee ettt et e e e e e et e e e e e e e eseabaeeeeaeeesesbatseeaeeeseanssssaseaeesannsnsnns 38
Rules for RePeating OPEIranadsceiiiiiciiiiiiiie e e ceciiiiee e e e eeetee et e e e eesitteeeeeeesesasbaaseeaeeesaasbatseaaaeesaassssnsaaessennsnsens 38
Rules for Defaults from Other Operands (VALUEFOR).......ccuueiiiiiieieiiiee ettt eeeee e st e e et e e e nnn e e s 39
USING NEXTKEY ..eiittieteeittenteesite st site e st e sttt e sat e e sateesuteesateesateesateesateesateebeeesabeesaseesabaeaeeessbeenseeesabeesabeesabeennseesnseennes 40
SPIIEEING RUIE SEES... ittt e e e e e et e e e e e e e se b taeeeeeeeeaastaeseaeeeasaastaasaaaeeesassasseasaessannssrens 40

Contents 5

Suggested Rules for SENSITIVE COMMANDS........uiiiiiiieiiiit ittt e e e e s rree e e sbae e e sabeeessanaeessabaeeesnasaeesnaseens 42

COUPLE COMMANG ..ttiiititieiiiieeeiiteeesiite e seiite e e sttt e e sttt e e sataeessabaeeessteeesaasaeeessbaeessssaeesnssaaessssaeesassesssnsseesssnsenesnnne 42
DEFINE and DETACH COMMANG ..vtiiiiiiiiieiiieeieesieesieesteessteesbeesteesabeesbeesabeessaesbaessssesnbaesnsaesnsseesssesnsssesssesnsees 42
1 I @oTa T 0o =1 Vo OO TS UPSUPRPP 43
LINK COMMANG....ttiiitiiiiiieiieesiieestee st e st e st e st e s be e sabeesabaesbeesabaesabeesabeesabaesabeesabeesabeeesteeabeesnsaesabeesssbeensseenaseenses 44
] = I @Te Y10 4 =1 o T [OOSR 46
SHUTDOWN COMMEANG ...ttt et b bbb bbb 47
Chapter 3: Using the ACF Command (CMDLIM Setting) 49
Creating @ RUIE ST ...ttt et e bt e s bt s bt e s bt e e bt e s b et e bt e sabe e e bt e s beeennee s beeeneenane 50
FAY @ U] Yol 4 4 = a e [USSP 50
COMPILE SUDCOMMANG.....uiiiiiiiiieiiieeitee ettt estteeteessttesbeessteesbeeesaeesbeesseesabeesseesabeesseesabeesnseesabaesnseesabesenseesnssesnseesnss 51
Compiling Directly at the TEIrMINalcooiiie e e e s e e e e ette e e s tae e e e st baeeeesaaeesssseeeesnsreaennnes 51
CoMPIlING FrOM @ CIMIS FIlE ...ttt ettt s be e s bt e s bt e s bt e e bt e s beeebeesabeeeseenane 52
Syntax of the COMPILE SUBCOMMANG. ...ccc.ciiiiiiiiieiieee ettt sttt sttt st e s st e sateesbeesaree s 53
DECOMPILE SUBCOMMANG ...tiiiiiiiiiieiieeiiee sttt st sbe st sbe e st e st e e teessbt e s beesabeessbeesabaeesaeenbeessaesnbeeensaesnbesensseenses 54
Syntax of the DECOMP SUBCOMMEANGcccuiiiiiiiieecie ettt e et e e e rate e e s etbe e e stbeeeeataeeeensaaeessreeaans 54
How to Use the DECOMP SUBCOMMANGuviiiiiiiieeeiiie et ctee ettt s tee e et e e e saae e s sabe e e e snbaeeessntaeesnnneas 55
(] = I8 I SR U] Yolo T3 Y210 - [o PSPPI 56
Syntax of the DELETE SUBCOMMANDoiiiiiiiiiiiiieiieeciee ettt sttt sttt st e st e st st e saneesabeesanee s 56
STORE SUDCOMMANG ..iiititiiiiiiiieeste ettt st e st si e e sttt e s e e sateesateesateesateessbeesabeesaseesabeesaseesabaessseessseessseesnseesaseesnseesnseenn 57
Syntax of the STORE SUDCOMMANGuiiiiiiii ettt et e e ettt e e te e e e st e e e estbaeeseasaeeesatbeeeenssaeeeensaaeessrenanns 57
How to Use the STORE SUBCOMMANcooiiiiiiiiiiieiie ettt et et sbe e e sareennees 58
TEST SUDCOMMANT ..ttt ettt ettt ettt et e sttt st e e sttt s bt e sttt e bt e sabe e e bt e sabe e e beeeabe e e sbesabeeessbeeabeeesnbeesteesnneenees 58
Syntax of the TEST SUBCOMMANG........uiiiiiie et e e s e st e e saae e e e s taeeeesaeeessnseeeesnseeeennnes 58
TEST SUBCOMMANT KEYWOITSeeiiiiiiiee ittt e ettt e e e e e sttt e e e e e e e e bt e e e e e e eeseasbaaeeeeeeesassstaeeeesesessstrnneaassannes 59
How to Use the TEST SUDCOMMANG ..coiuiiiiiiiiie ittt ettt e e et e e s eabe e e sbbe e e e sabbeeeeabaeesaraeas 60
HOW t0 INTEIPret TEST RESUILS ..eeiiiiieeieiiieeciteeestee e ettt eete e sttt e e st e e s e aae e e sabeeeesataeeeenseeeesnaeeeesnsseeeesseeesnnsnnas 62
Chapter 4: Using the ACF Command (DIAGLIM Setting) 63
T =Y g N DI Tod g Lo 1Y I o o 1T URRTRRRN 64
(O DT T={ g o YT = | £ USSR 64
Sample DIiagnose LIMITING RUIE SET ...ccoiuuiieieiiie sttt e e e e e e eaee e e st e e e e s ateeesessaeeesaseeeesnsaeeeansaeesnnsnens 65
(O1g Ta T o= T A (U1 I PSPPI 65
ACE SUDCOMMEANGStieeiiiee ettt ettt e ettt e s ettt e e e a bt e e s et te e e sabbeeesabeeesabaeeesabeeeeensbaeesaasaeesaasbeeesnnbaeesaanneas 66
COMPILE SUDCOMMANG.....uiiiiiiiiieeiet ettt ettt et s e st e sttt s bt e sttt s et e sabeesaeesabeesbeesabeesaseesabaesseesabeesneesbaesseenase 66
Compiling Directly at the TeIrmMINQlooi i e e e et e e s e e e e s e e e seseeeeesnneeeesnreeeeannes 67
ComMPIlING FrOM @ CIMIS FilBueiiiiiie ittt ettt e e e e e et e e e e e e e s et ta e e e e e e seaastaaeeaeeseanstaeseaaeseaanstaanaaaens 67
Syntax of the COMPILE SUDCOMMANG.........uiiiiiiiiiiiieee ettt e e e e e st e e e e e e e s st b aeeee e e e s srasaeeeeeesennnsrees 68
DECOMPILE SUDCOMMANG ..tiiiiiiiiiiiiieeeitee ettt e sttt e st e e sttt e e sttt eessbte e e sbbeeeessbeeessastaeesasbeeesanbaeesaasbeeesansaeesnsbaeesnnnne 69

6 Command and Diagnose Limiting Guide

Syntax of the DECOMP and LIST SUDCOMMANASc.veiiiiiiiiiiiieiieeeit ettt sttt st e esanee s 69

[L I S U] o Yoo 0 ' =g Lo PSPPI 70
Syntax of the DELETE SUDCOMMANGoiiiiiiiiiiiiieeeie et ctee et e e eee e e st e e e e tte e e seaaaeeesasseeeessaeeeensseeesnnsneenns 70
STORE SUDCOMMANG ..iitiiiiieiitie ittt ettt st sttt s e e s e e sat e e sabeesabeesabeesabeesabeesaseesabeesabeesabeesabeesabeesaseesabeesaseesasaesnseess 70
Syntax of the STORE SUDCOMMANGuiiiiiiii ettt et e e ere e e st e e e e ate e e seaaseeesasreeeessaeeesnssaeesnsneaans 71
SR YU o Tele] o2V a 0 F: T To [TP PPRRURRN 71
Syntax of the TEST SUBCOMMANG......coiiiiiiiiieeee ettt st e st e sb e e st e sbeesaree s 71
TEST SUDCOMMANT KEYWOIAS ...veiiiiiieeeiiieeceiiee e ctee ettt e ee e e e st e e et e e e eaetaeesaseeeesssaeeeasssaeesansseeesnsseeeassaeesnnsenns 72
Chapter 5: Command Limiting the CP Spooling System 75
CP Commands That AffECt SPOOIING ...c..viiiieiiie et e e e e e te e e st e e e st e e e e eabte e e sasaeeesabseeeessaeesnnseeas 75
Class D SPOOI File COMMANAS........eiiiiiiiiiiiieeectieeeerte e e eetee e e staeeeetteeessbaeeesbaeaeeassaeesssaeeaastaeeeanssaeesassseeesnsseeesnes 75
(0 T Y oJo Lol 1 T @feT 0 41 0 4 =1 o K3 USSPt 77
Commands That Indirectly Affect SPOOIING......ccuiiiiiiie et 77
Using Command Limiting to Protect SPOO0I FIleScoouiiiiiiiiiiiieeie ettt 78
Spool File Attributes That Can Be Used iN @ RUIEiii ittt tre e e et e e e ta e e e eaaa e e sareeeens 78
Choosing a Method of SPOO0I File Prote@CtiON.......cccccuiiiiiiiee ettt e e e ee e e et e e e e aree e seabeeeesabreeeennes 79
HIErarChy OF OPTIONS ..coeeieiiiieiee ettt esab e s et e e e bt e e sab e e s at e e sabe e bt e e sabeeeneeesabeeneeesnneennees 81
Using Command Limiting to Protect the SPOOI QUEUEcocuiiiiiiiiiiiiecee et 82
PrOtECHION DY Class.....iiiiiiiieeeee ettt ettt e e bt e st esat e e s abe e be e e sate e ne e e sabeenneeesareennes 83
oY u Yot oY o o}V o] o o o HPU U R 84
[oY u=Totu o) ol) VA © T3 T oo I o] s o FO USSR 86
Protection by SPOO0I FilE OWNET........uiii ettt e e e st e e e ee e e s tae e e e ssteeesensaeeesnsteeeennseeesnnneeas 87
[o Xu=Totd oY ol o} VA @ T3 T Vo I =T = S 89
[oY u=Totu oY o o}V D 1T AT F- 1 L] o IS 90
Chapter 6: Command Limiting for Shared File System 91
COMMANT SYNTAX 11iitiieeeiiiieeeiee e st e e st ee e sttt e e eret e e e s aaeeeesteeeeasseeeesasseeeansteeeeassaeeeansseeeeasteeesansaeeessseeeesnsseesansseeesnnseens 91
AV LA] o] LT OO PO PO PSP UT PP UPPPROPPUPON 93

Chapter 7: Controlling Syntax Error Processing for Command

Limiting 95
OVEITIdING The DEFAUIESeiiiiiiei et e ettt e e et e e ettt e e e s te e e eeaaeeeeabeeaeaabeeeeansseeesassaaeeasbaeeeanssaeeeanseeas 95
VAL D =T o T GO o] o] o - N 96
Logonids That Should Have the SYNERR LOZONId Fieldccccuiiiiiiiieieiei et e e svee et eae e s e e 97

Chapter 8: VM Directory Command Limiting and Logging Support

Important Installation INfOrMAtioNcoiciii e e e e e e e s eae e e e st e e e e staeeesnnaeeesnreeeans 99

Contents 7

Protecting the VIM Directory in DIFMIaintcoiueiiiieiiieeee ettt sttt ettt et e s e s bt e s beeeneesane 100

Rule Writing Guidelines for the DirMaint COMMaNGcccueiiiiiiiiiriieeee ettt s 100
DirMaint Version 1 Release 5 and Above COmMMaNd SYNTaX.....cccueevcveeeeiiirreieiereeeiireeeesereeeeerreeesereesesnsneessnnnnas 101
Commands with Special Rule CoNSIAEIratioNScccviiiiiiieeeiieee et sre e e e e etre e st e e e srta e e eeneaeeesanaeeeans 102
Converting DirMaint Version 1 Release 4 Rules to Version 1 Release 5 and ADOVE..........ccceeeevvveeeeceveeesnveenn. 104
Chapter 9: Syntax Model Command Language 107
Compiling Command SYNTAX MOTELScccuuiiiiiiiie et e e e et e e e e tre e e st e e e eatreesnsseeesnsseeeestaeesnnneeas 107
CoMPONENTES OF @ MOcoeiiiiieiee ettt st e e st e et e s bt e e bt e st e e e bt e sabeeeaseesabeesanee s 109
Characteristics 0f @ COMMANG MOUENcooiuiiiiiiiiie e st e e st e e s abte e s sbaeeesnnbaeessaneeas 110
NOTES ON SIMICL ClAUSES ..eeuvveeeiieriteesiiiesteesittesteesbeesseesebeesuseesabeesseesabeessseessbaessseesabessnseesstessseesasessnseesnsessnsessnns 112
Elements of @ COMMANG MOccouiiiiiiiiieiiieeiee sttt st s e s te e st e e s beesabe e sbeesabaeebeesnbaeenseesnbaeenseesnns 113
COMMAND ClAUSE .uveeeitieiieesteeeieesteeesteestesssseesabeesseesabeesseesataesseesabeessseesabessnsessssessseessseessseessseessseesssessssees 113
Verb Descriptions (COMMAND ClAUSE) ..cuueeiuieerieeiieeeieeseeesteesteessseesseessseessseessseessseessseesssssssseessseesssesssesssses 113
[0 1Y B P T E] PP 116
Verb Descriptions (FORMAT ClaUSE)uuviiieiiieeiiiieeeitieeeeitteeeeeiteeeestreeeetbaeesetseeeesstaeeeessseessssseessssseeenssaessnnssens 116
NEXTIVIDL ClAUSE ..eeuvveeireesiieesiieesteesiteesteesiteesiseesabeessseesaseesssessabeesnseesssessssessssessnsessnsessnseesssessnsesssessnsessnseeensessnne 117
Verb Descriptions (NEXTIMDL ClAUSE) ...eecuvieiieerieeiieeeiteesteesteesteestteessaeessseessseessseessseessseessseessseesssessssessssesssnes 117
OPERAND ClAUSE ..uuttviiieeieeiiititeeeeeeeeeittteeeeeeesesareeeeeeesesassaeeeaeesaaassrasaeaeesaasstaaseaessansstasseesesesaastasaeeseeesassrraeeeens 118
Verb Descriptions (OPERAND ClaUSE) ...cccuuieiieeeiieiieeeiie st ettt e steestaeesteestteesateessseesaaeessaeessaeassseesssaesssessnsesssses 129
GROUP ClAUSE «.veeiveieitieeieeeieesteesiee st e s steesabeesbeesabeesabeesabeesaseesabaesabeesabeesaseesabeessseesabeesnseesabeesnseessteesnseesnbaesnseesn 134
Verb Descriptions (GROUP CIAUSE)c..uviiieiiiieiiiieeeciiee ettt e ettt e e e st e e eette s e stteeeesataeeeessaeesssaaeesasseeeestaeesnnseens 139
COMIMENT ClAUSE ..euveeuieetieieeitesitesteesteesteesteetesetesaeesseesteensesnsesasesaeesseenseanseensesasesssenseensesnsesnsesasesaeesseenseensesnsesns 140
NULL ClaUS ...ttt ettt et se e st e st e st e sab e sabeesab e e subeesabeesabeesabeesaseesabeesabeesabeesaseesabeeeaseesabeeeneesabaeeneenase 141
Chapter 10: Using the Model Setting 143
(@ 7T 0= 2= T 1V, o Yo =Y SR 144
Determine the Syntax of the COMMANGooiiiiiiiicee e et e e e s e e e et e e e eennneas 144
Create @ TeSt SYNTAX IMOE!veeii i e e s e e e e e s e st e e e e e e e e e asbaaaeeeeeesrnssaaaeeaens 145
(000 0 oo 1 11T d o TNV oY =Y IR PR 149
CrEate @ TEST RUIE ..eieie et ettt st st e et e s bt e e bt e sa bt e sabeesabeesaseesabeesaseesabaesaneens 149
TESE T MO ...ttt ettt s b e st e e bt e s bt e e bt e sa b e e s bt e sabeeenbeesabeeebeesbaeeneenane 149
FiYor)V 1 (=N 0o o oY o aF- 1o BT a1 Y-SR 152
VT Yo 11 AVATaY =4 W \Y, Lo Te 1] ISP PUPPRRPNE 152
COMPILE SUDCOMMANG .. .iiiiiiiiiiiiiiee ettt ettt ettt e ettt e e sttt e e sttt e e s s abte e e sabbeeessbaee s abbeessabbeeeesbaeesnsteessabaeeessbaeesnaseeas 153
Modifying @ COMMAN IMOEI ...c...eviiiiiiee et e e e e et e e s e ee e e st e e e enteeeesnsseeesnssaeeannseeesnnnneas 154
The DECOMPILE SUDCOMMANG ..coutiiiiiiiiiieiee sttt sttt sttt st e st e st e sbeesabe e ssteesabeesaseesabeesnseesabaesnseesabaesnseenane 155
The DELETE SUBCOMMANGiiiiiiiiiiiiee ettt ettt st e e e sttt e e sttt e e s abt e e e sbbeeeeabeeesaasbeessabbeeessbeeesansaeessanseeenns 155

8 Command and Diagnose Limiting Guide

Chapter 11: Transposition Routines for Command Limiting 157

TraNSPOSITION ROUTINES....eeiieiiieiee ettt ettt ettt e e e e s e s aa bttt e e e e s e s aabe b eeeeeeesaababteeeeeesanssbaeaeeeesenansbaeaeaeesanaan 157

Index 181

Contents 9

Chapter 1: Introduction

This guide provides you with guidelines to follow when writing command limiting rules,
including the basic structure of a command limiting rule set. We explain how to use the
ACF command to create, display, change, and delete command limiting rule sets. We
provide guidelines for protecting the VM spooling subsystem and the licensed
VM/Directory Maintenance Product. We also explain what to do if a syntax error is
detected and how to override the defaults. We also explain transposition routines and
syntax model command language.

This guide also explains how to write rules to limit who can issue specific diagnose
instructions. We show you how to use the ACF command to process these rules,
including compiling, testing, storing, decompiling, and deleting these rules. We also
provide special CA ACF2™ for VM (CA ACF2 for z/ VM) diagnose codes.

This section contains the following topics:

Audience (see page 11)

Required Reading (see page 12)
Command Notation (see page 12)

Audience

This guide is targeted to users who are responsible for the following tasks:

m Limiting who can execute certain CP commands and diagnose instructions
m Controlling how syntax error processing is handled for command limiting
m Setting up transposition routines

m Command limiting and logging VM directory commands

m Modifying, creating, and deleting syntax models

m Converting command limiting and diagnose limiting rules to include the MDLTYPE.

Chapter 1: Introduction 11

Required Reading

Required Reading

IBM Publications

We recommend you have these IBM publications for reference:

Guide Number

CP Command Reference for General Users SC19-6211
VM/Directory Maintenance Program Product for General Users SC20-1839
VM/Directory Maintenance Program Product: Installation and SC20-1840

System Administrator’s Guide

CA Publications

We also recommend you be familiar with the following CA ACF2 for z/ VM
documentation:

Guide Description

Administrator Guide This guide describes all the various subcommands of the
ACF command. You should be familiar with basic CA ACF2
for z/ VM concepts, such as the User Identification string
(UID), production by default philosophy, and components
of CA ACF2 for z/ VM.

Command Notation

This guide uses the following command notation. Enter the following exactly as they
appear in command descriptions:

Type of Characters Description

UPPERCASE Identifies commands, keywords, and keyword values
that you must code exactly as shown.

MIXed Cases Identify command abbreviations. The uppercase
letters are the minimum abbreviation; lowercase
letters are optional

12 Command and Diagnose Limiting Guide

Command Notation

Type of Characters

Description

Symbols

You must code all symbols, such as commas, equal

signs, and slashes exactly

as shown.

The following clarify command syntax; do not type these as they appear:

Type of Characters Description

lowercase Indicates a variable that you must supply.

[] Identify optional keywords or parameters.

{} Require that you choose one or more of the
keywords or parameters listed.

underlining Shows default values that you do not have to

specify.

Separates alternative keywords and parameters,

choose one.

Means you can repeat the preceding items or group

of items more than once.

Sample Command Explanation

ACFNRULE{ruleid | KEY(ruleid)} ACFNRULE Command abbreviation.

TYPE(rsrctype)]- TYPE Optional value you can
specify.

{[ADD(ruleentry)...]- ADD Optional keyword.

[DELETE(ruleentry)...]}- DELETE Optional keyword.

[LIST|NOLIST] - LIST Default, you do not have
to specify.

[VERIFY | NOVERIFY] VERIFY Default, you do not have

to specify.

Chapter 1: Introduction 13

Chapter 2: Rule Writing Guidelines

This chapter explains what command limiting rules are, how to use them, how to write
them, and how to use masking. Read this chapter thoroughly before writing command
limiting rules.

This section contains the following topics:

What Is Command Limiting? (see page 15)

Components of Command and Diagnose Limiting (see page 16)
Who Can Write Command Limiting Rules? (see page 19)
Command Limiting and CP Special Considerations (see page 19)
Basic Rule Set Structure (see page 19)

How Commands Are Validated (see page 20)

Syntax of a Rule Set (see page 21)

Operand Masking Techniques (see page 27)

Using NEXTKEY (see page 40)
Suggested Rules for Sensitive Commands (see page 42)

What Is Command Limiting?

In a VM environment, the Control Program (CP) component of the operating system
controls the operation of the CPU. Privileged VM users can control, modify, and display
sensitive portions of the CP through a set of powerful commands, called CP commands.
CA ACF2 for z/ VM command limiting is a way to control who can execute specific
operands of CP commands.

The CP command classification scheme is a standard security facility of VM. It lets you
classify a user to CP. By default, CP classifies users through seven nonhierarchical
privilege classes, ranging from the highest level of A (defining a system operator) to G
(general user). CA ACF2 for z/ VM does not interfere with the normal CP privilege class
security. Normal privilege class validation is done even with command limiting active. CA
ACF2 for z/ VM command limiting provides a finer degree of control over the execution
of CP commands. Some of the benefits you receive from command limiting include:

m Controlling the use of individual command operands. For example, the CHANGE and
TRANSFER commands let users manipulate reader, punch, and printer files. You
control user access to files on the VM spooling system.

m Preventing users from executing a particular CP command without having to modify
CP. For example, all class G users can normally issue the TRACE command.
Command limiting can prevent users from executing TRACE and other powerful CP
commands.

Chapter 2: Rule Writing Guidelines 15

Components of Command and Diagnose Limiting

m Command limiting controls are very flexible. For example, you can:

- Log the execution of powerful commands and operands to maintain a
complete audit trail of their use

— Select the particular CP commands that you want to control.

Components of Command and Diagnose Limiting

The major components of command limiting are listed below. Subsequent chapters in
this guide explain each component in depth.

Command Limiting Rules

Command limiting and diagnose limiting rules are stored on the CA ACF2 for z/ VM
Infostorage data base. These rules, similar to access rules, describe the environment
where a particular CP command is executed. The environment criteria include a
combination of command operands present when a command is issued and the User
Identification string (UID) of the user that issued the command.

ACF Commands

To maintain command limiting rule sets, use the following ACF subcommands:
COMPILE
Converts a rule set into the CA ACF2 for z/ VM format
DECOMP
Lists a previously stored rule set
DELETE
Removes a rule set
STORE
Stores a set of compiled rules on the Infostorage database
TEST

Tests the correctness of a rule set.

16 Command and Diagnose Limiting Guide

Components of Command and Diagnose Limiting

Command Models

Command models are an important component of command limiting. These models
describe the valid syntax, format, and operands of a CP command to CA ACF2 for z/ VM.
One command model exists for each CP command. However, there can be multiple
command models for the same CP command with different operating system and
release identifiers.

For example, the following command limiting rules can coexist:

$KEY (IPL) MDLTYPE(510)
$KEY (IPL) MDLTYPE(520)
$KEY (IPL) MDLTYPE(530)
$KEY (IPL) MDLTYPE(540)
$KEY (IPL) MDLTYPE(610)
$KEY (IPL) MDLTYPE(620)
$KEY (IPL) MDLTYPE(630)

While the SKEY identifying the IPL command is the same, the MDLTYPEs identifying the
operating system and release are different.

We supply command models for each standard CP command. Typically, they are
compiled and stored on the Infostorage database during the initial installation of CA
ACF2 for z/ VM. You can modify these models. For information about using MDLTYPE,
see the chapter "Syntax Model Command Language."

Command Limiting Journal

The ACFRPTCL report formats the logging and violation records that are written when
CA ACF2 for z/ VM validates the execution of a command. For more information about
this report, see the Reports and Utilities Guide.

Chapter 2: Rule Writing Guidelines 17

Components of Command and Diagnose Limiting

Transposition Routines

Most CP commands accept many different types of operands that are translated (or
transposed) in some way when CP interprets them. Transposition routines convert CP
command operands and run time values into a common variable for rule writing. This
lets you write general rules so you do not have to account for every command variation.
You should be aware of the role transposition plays during command validation.
Knowing the operands transposed and how they are transposed makes it easier to write
rules that require minimal future maintenance while providing a high degree of CP
command security.

As an example of how transposition routines work, assume you want to write a rule to
allow the user ID MAINT to execute the ATTACH command. You create the following
rule entry:

*- TO OWNER AS *- UID(MAINT) ALLOW

This rule entry is transposed to:

*- TO MAINT AS *- UID(MAINT) ALLOW

MAINT then issues the following command:

ATTACH 0381 TO * AS 381

CA ACF2 for z/ VM interprets this command as:

ATTACH 0381 TO MAINT AS 0381

Comparing the command to the rule, CA ACF2 for z/ VM makes the following
determinations:

m 0381 matches any mask (*-)

m TO matches the keyword TO

m User ID MAINT matches MAINT

m AS matches the keyword AS

m 0381 matches any mask (*-)

m The command issuer (MAINT) matches UID(MAINT).

Since all operands and the user ID match the rule, CA ACF2 for z/ VM now checks the
authorization that was specified in the rule entry (ALLOW) and the command is allowed.

18 Command and Diagnose Limiting Guide

Who Can Write Command Limiting Rules?

Who Can Write Command Limiting Rules?

Normally, an unscoped security officer (a user with the SECURITY privilege and no
defined scopes) is responsible for writing command limiting rules.

Command Limiting and CP Special Considerations

VM logon IDs can affect command limiting and CP command processing. As a general
rule, do not assign user IDs that can be mistaken for a CP command or command
operands. Do not assign a user ID of one to four numeric characters that could be
interpreted by CP as a spool ID instead of a user ID. For example, a user ID of READER
could be interpreted literally by CP as the reader queue or someone named Reader. So
if a user wanted to see if READER was logged on, he would enter Q READER. However,
instead of responding with information about the user ID, CP checks the reader queue
of the user who issued the command.

Also be aware that you can command limit the ACFSERVE QUERY STATUS command.
This command limiting prevents users from executing CA ACF2 for z/ VM reports,
utilities, or the ACF command. If you command limit this ACFSERVE command, be sure
to give responsible individuals the authority they need to perform their tasks.

Basic Rule Set Structure

A key that is the full name of a CP command identifies a command limiting rule set. For
example, the command limiting rule set shown below applies to the CP SPOOL
command:

A $KEY(SPOOL) MDLTYPE(530)

B CON PURGE UID(****OPR) LOG
C CON START UID(****QPR) ALLOW
D PRT COPY - ALLOW

E PRT RSCS ALLOW

A

Specifies the full name of the CP command the rule set applies to.
B

Logs each time OPR issues a SPOOL CONSOLE PURGE command.
C

Lets OPR issue a SPOOL CONSOLE START command.

Chapter 2: Rule Writing Guidelines 19

How Commands Are Validated

D
Lets all users issue a SPOOL PRT COPIES nnn command. The dash (-) after the COPY
operand says that you can specify any number of copies. You could have included a
value in the rule entry if you wanted to limit the number of copies a user could print
(for example, COPY 5).

E

Lets all users issue a SPOOL PRT RSCS command to send printed output through the
Remote Spooling Communications Subsystem (RSCS).

How Commands Are Validated

To write effective command limiting rules, you must understand how rule entries are
sorted and interpreted. You must also understand the matching environment concept.
These concepts and the command validation process are explained in the following
sections.

Rule Entry Sorting
Rule entries are automatically sorted from most specific to most general. CA ACF2 for z/
VM sorts command limiting rule sets as follows:
Operands
Alphabetically, masked then unmasked
uiD
UID of the users the rule applies to
SHIFT operands
In alphabetical order, with “none specified” last
SOURCE operands
In alphabetical order, with “none specified” last
UNTIL|FOR
Last Gregorian date the rule is valid on.
Rule entries are sorted this way to make rule interpretation more efficient and rule

writing simpler. To interpret a sorted rule, CA ACF2 for z/ VM simply compares the first
rule entry to the actual user request, then the second, third, and so on.

The SNOSORT control statement stores and interprets rule entries in the exact order
they are entered in the rule set. We do not recommend using SNOSORT. If you must use
it, be sure to test the unsorted rule carefully to ensure it works as expected.

20 Command and Diagnose Limiting Guide

Syntax of a Rule Set

Matching Environment Concept

A rule match occurs when the operand values defined in a rule entry correspond to the
actual environment of the user’s command request. The first rule entry that matches
determines if the command is allowed to execute, allowed but logged, or prevented and
logged.

To summarize, CA ACF2 for z/ VM validates access to a CP command and operand
combination by:

Searching for a command model that matches the syntax and format of the
command the user issued. This command is then converted into the format CA
ACF2 for z/ VM requires and the operands are sorted as defined in the command
model. If no command model is found for a particular command, the MODE field of
the CMDLIM VMO record defines how the command request is handled.

Checking each entry in the rule set for a match of the UID, SHIFT, SOURCE, and
UNTIL dates. If CA ACF2 for z/ VM finds no matching entry, the MODE field of the
CMDLIM VMO record defines how the command request is handled.

When CA ACF2 for z/ VM finds a matching rule entry, it checks the entry to
determine if the command format in the rule entry matches the command entered
by the user. If the formats match, the user’s command is compared to the rule
entry.

Interpreting the first rule entry that matches the user’s access environment
(command format, UID, SHIFT, SOURCE, UNTIL, and operands). The command then
executes, executes but is logged, or is denied and logged, based on the access
permission values in the matching rule entry. If CA ACF2 for z/ VM finds no
matching rule entry, the MODE field of the CMDLIM VMO record defines how the
command request is handled.

If the command affects a spool file, checking the system spool to ensure the user is
authorized to manipulate all of the files in the scope of the command. For more
information, see Command Limiting the CP Spooling System (see page 75).

Syntax of a Rule Set

All command and diagnose limiting rule sets consist of three parts: Control statements,
rule entries, and access permissions. The full syntax of a command limiting rule set is
shown below.

Chapter 2: Rule Writing Guidelines 21

Syntax of a Rule Set

Control Statements

The control statements identify the command and diagnose limiting rule set and
determine some rule set characteristics. The control statements and the syntax rules for
coding them are:

$KEY (command | diagnose) [MDLTYPE(mdltype)]
$MDLTYPE (mdltype)
[$MODEL (model)]
[$MODE (QUIET |LOG |WARN|ABORT) 1]
[$NOSORT]
[$OWNER (ownerid)]
[$USERDATA(localdata)]
%CHANGE uid|uidmask]

m Each control statement must begin in column one.
m The SKEY control statement is the only required control statement.

® You can use any humber of $ or % control statements. If you use the same type of $
control statement more than once, CA ACF2 for z/ VM uses only the last control
statement of that type. Enter all $ control statements before any rule entries in the
rule set.

m Comment statements begin with an asterisk (*) in column one and can be anywhere
in the input. They let you place text inside an uncompiled rule set. This text is lost
when the rule set is compiled.

®m You can continue all input to the compiler on multiple statements by using a dash
(-) as the last nonblank character on the line. If you continue a %CHANGE
statement, the next line is treated as a continuation of the %CHANGE control
statement, even if that line has the format of another control statement.

You can specify the following control statements in a command and diagnose limiting
rule set:
SKEY(command | diagnose)

Supplies the full name of the CP command or diagnose code. You cannot mask this
name.

SMDLTYPE(mdltype)

Specifies a three-character name that identifies the appropriate command model. If
you do not specify the SMDLTYPE as an operand of the SKEY control statement, you
can specify it as a separate control statement.

22 Command and Diagnose Limiting Guide

Syntax of a Rule Set

Each command model defines a valid syntax of a CP command for the operating
system and release specified in the SMDLTYPE. The SMDLTYPE lets you write rules
for the same CP command for different multiple operating systems and releases.
Doing so lets you create and test command limiting rules under operating systems
other than the current release running at your site.

You can also use the SMDLTYPE to separate rule sets that apply to different CPUs in
an CA ACF2 for z/ VM shared database environment. You can then create separate
rules for the same diagnose for different CPUs.

We supply command model files for all supported releases of the VM operating
system. Their file type is always MODEL. For more information about the command
model files, see the Installation Guide.

For example:

- ZVM510—z/VM Version 5, Release 1.0 systems
- ZVM520—z/VM Version 5, Release 2.0 systems
- ZVM530—z/VM Version 5, Release 3.0 systems
- ZVM540—z/VM Version 5, Release 4.0 systems
- ZVM610—z/VM Version 6, Release 1.0 systems
- ZVM620—z/VM Version 6, Release 2.0 systems
- ZVM630—z/VM Version 6, Release 3.0 systems

- The models for DirMaint are located in a separate file, depending on the
release of DirMaint you are running. For example, DIRMR410 contains the
model for VM/Directory Maintenance Function Level 410.

If you do not define the MDLTYPE control statement, CA ACF2 for z/ VM command
limiting uses the default MDLTYPE defined in the CMDLIM VMO record. Diagnose
limiting uses the default MDLTYPE defined in the DIAGLIM VMO record.

SMODEL(model)

Specifies the name of a syntax model description record used when compiling this
rule set. The SMODEL control statement is optional. You should not specify it when
a syntax model exists that has the same name as this rule’s SKEY. The SMODEL
control statement is designed for use by NEXTKEY rule sets, where you define the
SKEY of the NEXTKEY rule set and the SKEY control statement does not match a
syntax model. For more information about NEXTKEY, see the Using NEXTKEY
section.

$MODE(QUIET|LOG | WARN | ABORT)

Specifies the mode for this CP command validation. Whenever an access is denied
through this rule set, the mode determines the CA ACF2 for z/ VM response. Valid
modes are:

QUIET

Allow the access

Chapter 2: Rule Writing Guidelines 23

Syntax of a Rule Set

LOG

Allow but log the access
WARN

Allow the access but issue a warning message
ABORT

Abort and log the access attempt.

If a rule entry does not permit the request, it is aborted. An exception is how the
SYNERR field overrides the mode value. For more information about this field, see
the chapter "Controlling Syntax Error Processing for Command Limiting." For more
information about the SMODE control statement, see the Administrator Guide.

SNOSORT

Prevents standard CA ACF2 for z/ VM sorting of command limiting rules when you
store a rule set. For more information about the SNOSORT control statement, see
the Administrator Guide.

SOWNER(ownerid)

Provides an information-only field of up to 24 characters. For more information
about the SOWNER control statement, see the Administrator Guide.

SUSERDATA(localdata)

Specifies any text string of up to 64 characters that is stored with the rule set. For
more information about the SUSERDATA control statement, see the Administrator
Guide.

%CHANGE (uid |uidmask)

Specifies a UID string or UID mask. This mask lets a SECURITY privileged user
delegate the authority to change and recompile the rule set to other users through
a UID string or UID string mask. For more information about the %$CHANGE control
statement, see the Administrator Guide.

Access Environments

Individual command limiting rule entries follow the control statements in a rule set and
specify the environment and access permissions when a CP command is executed. Each
rule entry describes a unique access environment. When the actual user request
matches the access environment defined in a rule entry, that rule determines if the
command is executed, executed but logged, or not executed.

The syntax rules for individual rule entries and the rules for coding them are:

operandmask UID(uidmask) SHIFT(shift) SOURCE(source) -
UNTIL(date) |FOR(days) DATA(userdata) NEXTKEY(nextkey)

24 Command and Diagnose Limiting Guide

Syntax of a Rule Set

A rule entry can span multiple lines. Each line is normally 72 characters, although
the compiler honors the logical record length of the file.

Start rule entries in column two. This avoids having a rule entry treated as a
comment when that entry begins with an asterisk.

A dash (-) at the end of a line unconditionally continues a rule entry from one line to
the next. For example, if a dash appears at the end of a rule entry and the next line
contains a comment, the comment is assumed to be a continuation of the rule
entry.

Use the following parameters to specify the access environment:

operandmask

Defines a unique combination of CP command operands. For example, when you
enter a command, you can specify one or more command operands, such as IPL
CMS. In this case, CMS is an operand and becomes part of your access environment.
The UID keyword must follow the last operand in this mask. CA ACF2 for z/ VM
treats any other rule entry keywords found before UID(uidmask) as operandmask
operands. You can mask operands. For information about masking operands, see
the Operand Masking Techniques section.

UID(uidmask)

Specifies the UID strings of users this rule entry applies to. This parameter is
required and must follow the operandmask because it acts as the ending delimiter
of the operandmask. For more information about this control statement, see the
Administrator Guide.

SHIFT(shift)

Specifies the name of the shift record on the Infostorage database that applies to
this rule entry. It defines days, dates, and times when access is allowed. If you do
not specify this parameter, any access the rule indicates is appropriately allowed,
logged, or prevented for all days, dates, and times. This parameter is optional.

SOURCE(source)

Specifies an input source or source group name where this rule should apply. For
example, you can specify a terminal ID. The access is allowed only if the user is
logged onto the specific terminal. If you do not specify a source, any input source is
valid. Ask your Security Administrator for a list of valid group names. This parameter
is optional.

UNTIL(date)

Specifies the last date this command limiting rule applies. For more information
about this control statement, see the Administrator Guide.

FOR(days)

Specifies the number of days this command limiting rule applies. For more
information about this control statement, see the Administrator Guide.

Chapter 2: Rule Writing Guidelines 25

Syntax of a Rule Set

DATA(userdata)

Specifies any character string up to 64 characters. This string is retained with the
rule entry. For more information about this control statement, see the
Administrator Guide.

NEXTKEY(nextkey)

Specifies the rule ID of the next (or alternate) rule set that will be checked for this
access. If CA ACF2 for z/ VM denies access to this command based on the rule set
environment and access permissions in the original rule, CA ACF2 for z/ VM
proceeds to the rule specified in the NEXTKEY operand for further checking.

Access Permissions

A rule entry contains one parameter that specifies the action CA ACF2 for z/ VM takes
when an access environment matches the environment defined in a rule entry. If your
request to execute a CP command does not match any of the environments specified in
the related rule entries, the execution is usually denied, depending on the value
specified for the SYNERR field. For more information about this field, see the
“Controlling Syntax Error Processing for Command Limiting” chapter. The possible
access permission values are:

ALLOW
Specifies execution is allowed if the execution attempt matches the environment.
LOG

Specifies execution is allowed but logged if the execution attempt matches the
environment. A System Management Facility (SMF) record is written to log the
event for later reporting on the Command Limiting Journal (ACFRPTCL).

PREVENT

Specifies execution is denied if the execution attempt matches the environment. A
System Management Facility (SMF) record is written to log the event for later
reporting on the Command Limiting Journal (ACFRPTCL).

If you do not specify ALLOW or LOG, CA ACF2 for z/ VM assumes PREVENT.

26 Command and Diagnose Limiting Guide

Operand Masking Techniques

Operand Masking Techniques

Because most CP commands are free form, you can enter the command name, operand
values, and keywords many different ways. Almost every command and keyword has a
two- or three-character abbreviation. For most commands, you can enter operands and
keywords in any order. In addition, there are various command formats associated with
different CP privilege classes. In short, there is almost no end to the different ways you
can enter a command.

To simplify your job as a command limiting rule writer, CA ACF2 for z/ VM always breaks
down a command into a common format, described by the command model. This
means you can write your rules in a defined format, even though a user can enter the
command several different ways.

CA ACF2 for z/ VM lets you mask the values of UID strings and CP command operands.
UID masking works the same in a command limiting rule as it does for access rules. If
you are not familiar with UID masking, see the Administrator Guide for more
information. You can also mask CP command operands. Effective operand masking is a
critical element in every rule entry. CP command operand masking uses the dash (-),
asterisk (*), and pseudo operand values. For information about pseudo operand values,
see the Using Pseudo Operand Values in Rules section. You can combine the asterisk
and dash, but you cannot mask the CP command name.

$KEY (SPOOL)
PRINT - LOG

In the above command limiting rule, the dash (-) acts as a mask. The rule applies to the
execution of any CP SPOOL command with the operand PRINT followed by zero or more
valid operands. Of course, the CP SPOOL command syntax does not allow zero operands
in this case.

The following tables illustrate how to use the dash (-) and asterisk (*) for masking
keyword operands. For information about masking operands in a transposition routine,

see the Using Pseudo Operand Values in Rules section.

Below are examples of masks for operands:

Mask Description

- Masks all operands. Example:
- UID(*) ALLOW

- operand Masks all operands before the specified operand. Example:
- CLASS A UID(*)

- operand - Masks all operands, except for the one specified. Example:
- CLOSE -

Chapter 2: Rule Writing Guidelines 27

Operand Masking Techniques

Mask Description

operand - Masks all operands after the specified operand. Example:
T3380 - UID(*) ALLOW

*o Operand mask for a single operand (recommended for leading
masks that require at least one character)

Example:
TIMER *- UID(*) ALLOW

* Mask for a single character operand. Example:
- CLASS * UID(*) ALLOW

Below are examples of character masks in operands:

Mask Description

c* Mass up to one character per asterisk (*) (can be less or none).
c** Example:

C**. *

abc***** = any three- to eight-character string beginning “abc”

c*- Mask any number of characters. Example:
¢ abc*- = any length string beginning “abc”
c Mask one character per asterisk (). Example:
c *¥**abc = any eight-character string ending “abc”
* *

e
c*c Masks one character per asterisk (*). Example:
c**e ***Q***c = any eight-character string with “a” as the fourth
c** * “w, n H

- character and “c” as the eighth character

ok Masks up to one character per asterisk () (can be less or none).
Hkx Example:

** = Zero to two characters

¥EE*EX XK = Zero to eight characters

Rule Masking Example

To effectively write rules, you must understand how operands relate to models and how
to mask the operands. Below are two versions of the IPL command.

IPL 190 28 CL ATTN PARM AUTOCR

IPL 190 ATTN 28 CL PARM AUTOCR

28 Command and Diagnose Limiting Guide

Operand Masking Techniques

Both of these commands perform the same function, even though the operands are in a
different order in each command. To make rule writing easier in these instances, CA
ACF2 for z/ VM sorts operands against a supplied IPL command model so they are
always validated in a predictable order. To demonstrate this concept, the next three
sections examine the components of command limiting:

m The syntax of a command (the human representation)
m The model (the machine representation)

m Asample rule, that CA ACF2 for z/ VM uses to govern actions.

IPL Command Syntax
Shown below is the syntax of a typical CP command, in this case, the IPL command:

vaddr [cylno] [CLear]
[number] [NOCLear]{STOP} [ATTN]
{PMA }
{PMAV}

IPL [(PARM pl [p2 [pn)]]

{
{
{
{
{
{

Bl ol o e

systemname

Chapter 2: Rule Writing Guidelines 29

Operand Masking Techniques

IPL Command Model

The following is a representation of the command model for the IPL command:

COMMAND IPL
FORMAT CLASS=G
OPERAND VCUU, 4, TRAN=VCUU
OPERAND GROUP=0PTIONS
OPERAND GROUP=PLIST
FORMAT END

30 Command and Diagnose Limiting Guide

Operand Masking Techniques

FORMAT CLASS=G
OPERAND SYSNAME, 8, TRAN=ANY
OPERAND GROUP=PLIST
FORMAT END

OPTIONS GROUP TYPE=OPTIONAL
OPERAND LIST=((CYLNO,TRAN=HEX), -
(BLOCKNO, TRAN=DECIMAL))
OPERAND LIST=((CLEAR,2), -
(NOCLEAR, 3, TYPE=DEFAULT))
OPERAND GROUP=MOREOPT
GROUP END

MOREOPT GROUP TYPE=OPTIONAL
OPERAND LIST=((GROUP=STOPATN), -
(GROUP=PMAOPT))
GROUP END

STOPATN GROUP TYPE=OPTIONAL
OPERAND STOP, 4
OPERAND ATTN, 4
GROUP END

PMAOPT GROUP TYPE=0PTIONAL
OPERAND LIST=(-
(PMA, 3), -
(PMAV,4))
GROUP END

PLIST GROUP TYPE=OPTIONAL
OPERAND GROUP=PARM
GROUP END

PARM GROUP TYPE=KEYWORD
OPERAND PARM, 4
OPERAND GROUP=PARMOPTS
GROUP END

PARMOPTS GROUP TYPE=OPTIONAL
OPERAND AUTOCR, 6
OPERAND BATCH,5
OPERAND NOSYSPROF,7
OPERAND GROUP=CMSSEG
OPERAND GROUP=INSTSEG
OPERAND GROUP=SAVESYS
OPERAND ANYTHING, 236, TRAN=REST
GROUP END

Chapter 2: Rule Writing Guidelines 31

Operand Masking Techniques

CMSSEG GROUP TYPE=KEYWORD
OPERAND SEG, 3
OPERAND LIST=(-
(NULL,4), -
(SEGMNAME, 8, TRAN=ANY) -
)
GROUP END
INSTSEG GROUP TYPE=KEYWORD
OPERAND INSTSEG,7
OPERAND LIST=(-
(YES, 3, TYPE=DEFAULT), -
(NO,2), -
(NAME, 8, TRAN=ANY) -
)
GROUP END

SAVESYS GROUP TYPE=KEYWORD
OPERAND SAVESYS,7
OPERAND SYSNAME, 8, TRAN=ANY
GROUP END

COMMAND END

Sample IPL Command Rule

The sample rule below was written based on the command model and IPL command
syntax shown in the previous two sections:

$KEY (IPL)

CMS PARM AUTOCR UID(*) ALLOW

CMS10 - UID(QA) ALLOW

SYSNAME - UID(MAINT) ALLOW

- - NOCLEAR - UID() PREVENT
- - CLEAR PARM SAVESYS SYSNAME UID(MAINT) ALLOW
- - CLEAR PARM SAVESYS CMS UID(HELPDESK) ALLOW
- - CLEAR PARM - UID(*) ALLOW
- - PARM BATCH UID(CMSBATCH) ALLOW

I I

m |n the first rule entry, anyone can issue the IPL CMS command if they specify the
PARM AUTOCR parameter.

m |nthe second rule, only the QA user ID is allowed to IPL CMS10.

®m [nthe third rule, user ID MAINT can IPL any system name. SYSNAME is a pseudo
operand name because it is the same as the operand name specified in the model.
When you use a pseudo operand name, it matches all values allowed by the
transposition routine name.

32 Command and Diagnose Limiting Guide

Operand Masking Techniques

m In the fourth rule, everything in all groups is masked except for NOCLEAR.
Specifying NOCLEAR prevents command execution. NOCLEAR specifies the only way
a user can IPL a virtual device is if they IPL with the CLEAR option.

m In the fifth rule, a user can perform all IPL functions if they specify CLEAR. Only user
ID MAINT can issue SAVESYS to any SYSNAME.

m The sixth rule is very similar to the second one, except that only the user ID
HELPDESK can save systems named CMS.

m The seventh rule entry allows CMSBATCH to IPL a device with any option and allows
it to use the BATCH parameter.

Rules for Operands that Have Numeric Values

Syntax Model Command Language (SMCL) is a facility that describes the syntax for a CP
command. This section explains the syntax of the language so you can read a model to
write command limiting rules. They also provide a more indepth knowledge of the
language so you can modify the supplied models when you change the syntax of a
command or need to create models and limit commands that you added to CP.

Some commands accept numeric values for operands. They also have special
transposition routines that check to make sure that the numeric operand supplied is
valid. Operands that fall into this category and their corresponding transposition
routines are:

Transposition Name Operand
DECIMAL number
HEX hexloc
HHMM nnnn
MMSS nnnn
RCUU raddr
SPOOL spoolid
STORADDR hexloc
STRSIZ nnnk
VCUU vaddr
VUR vaddr

You can mask these operands.

Chapter 2: Rule Writing Guidelines 33

Operand Masking Techniques

Following is a brief explanation for using masking as a value for operands that accept a
numeric value.

m Asingle * means the operand is optional

m **ysed for a decimal number means 0-99

m ***ysed for a decimal number means 0-999

m 0* used for a decimal number means 0-09

Let’s use the SLEEP command as an example. To let someone sleep for 0 to 9 seconds,
code the rule as 0* SEC UID(*) ALLOW. Had you just put a single *, CA ACF2 for z/ VM

would interpret this as meaning any value can be present. Specify 0%, CA ACF2 for z/ VM
to allow 0-09 seconds.

As another example, to let anyone in your site define 0-50 cylinders of TDISK, code the
DEFINE rule as shown in the next example.

$KEY (DEFINE)

THk** AS *- CYL 0* UID(*) ALLOW
TH#** AS *- CYL 1* UID(*) ALLOW
THk** AS *- CYL 2* UID(*) ALLOW
THk** AS *- CYL 3* UID(*) ALLOW
TH#** AS *- CYL 4* UID(*) ALLOW
THk** AS *- CYL 50 UID(*) ALLOW
TH#** AS - - - UID(*) PREVENT

- UID(*) ALLOW

Because you specified no MDLTYPE for this DEFINE rule, CA ACF2 for z/ VM uses the
default MDLTYPE command model (as defined in the CMDLIM VMO record) for syntax
checking. This rule specifies 0-50 cylinders of TDISK and any other DEFINEs.

Rules for Operands That Have a Range

Some CP commands specify operands as single values or as value ranges. In addition,
these commands usually have multiple formats. A good example of this is the DETACH
command. Some common uses of DETACH are:

m Detach a single device, such as DETACH 0191

m Detach many devices, such as DETACH 0191 0492 0399

m Detach a range of devices, such as DETACH 0191-019F

m Detach devices from a user, such as DETACH 0191 FROM USERO01.

34 Command and Diagnose Limiting Guide

Operand Masking Techniques

The supplied command model for DETACH includes special indicators to handle any
combination of operands, including those listed above. Before showing sample rules for
operand ranges and addresses, you should understand that rule operand masking is
slightly modified to handle device addresses. Consider the mask 019*. To ensure only
valid addresses are used, a transposition routine modifies this standard masking
technique. For device addresses, the * is a position holder and the operands going to it
are numeric values. This means an operand mask of 019* is treated as 0190-019F (that
is, 019G-019Z is invalid, as it should be).

Under normal masking conventions, the trailing * means zero or one character must be
present to match the mask. In normal cases, this enables a singular address of 019 or an
address range of 0190-019F or 019G-019Z. However, 019 and 019G-019Z are not valid
because all valid device addresses are nn0 through nnF, where nn is any value between
00 and FF. Further, CA ACF2 for z/ VM considers an * in the low order portion of the
range to be a low-value (0) and considers an * in the high order portion to be a
high-value (F). For example, ¥19-1A* is transposed into a range of 019-1AF. For more
information about how ranges are transposed, see the appendix “Transposition
Routines for Command Limiting.” To demonstrate how this masking works, consider the
following rule entries for the DETACH command.

$KEY (DETACH)

0190 UID(*) ALLOW

019* UID(*) ALLOW

0190-01AF UID(*) ALLOW

0190 0191 019D 01BO UID(*) ALLOW
- UID() ALLOW

- UID(*) ALLOW

m [nthe first rule entry, one operand is allowed, but it must be 0190.

m |nthe second rule entry, one operand or a range of operands is allowed. The range
for matching purposes is 0190-019F.

m |nthe third rule entry, one operand or a range of operands is also allowed. The
range for matching purposes is 0190-01AF.

m |nthe fourth rule entry, you can specify 0190 0191 019D 01BO0, but they must
appear in that order. These singular values are treated as AND situations, meaning
this operand and that operand must be present for a match.

m |n the fifth rule entry, only one operand is allowed.
® Inthe last rule, zero or more operands are allowed.

The next series of examples shows how the ATTACH command uses device ranges. In
this first example, only OPRLEAD1 can issue all forms of the ATTACH command.

$KEY (ATTACH)
- UID(OPRLEAD1) ALLOW

Chapter 2: Rule Writing Guidelines 35

Operand Masking Techniques

In the next example, user MAINT can ATTACH tape drives 0581 and 0583 to any virtual
machine. The TO is not required in the rule because it is a default in the command
model. Here it clarifies the example.

$KEY (ATTACH)
0581 TO - UID(MAINT) ALLOW
0583 TO - UID(MAINT) ALLOW

In the next example, all system operators can ATTACH devices to the SYSTEM, but these
commands are logged.

$KEY (ATTACH)
- TO SYSTEM AS - UID(OPERATOR) LOG

In the next example, no users can ATTACH a volume as a 3300V device.

$KEY (ATTACH)
- TO - AS 3330V UID(-) PREVENT

Using Pseudo Operand Values in Rules

Another rule writing technique lets you specify a pseudo operand in a rule. This means
you can specify a fixed name in a rule for operands that have variable values and let any
operand match, as long as you specify a valid value.

You can use a pseudo operand name for any command operand that contains a variable.
CA ACF2 for z/ VM provides transposition routines to allow you to use pseudo operands.
You can determine the commands to have transposition routines by examining the
command model. If the operand is defined with a TRANS=routine verb, then it is a
variable. For more information, see the appendix “Transposition Routines for Command
Limiting.”

We can use the READY command to illustrate a simple rule.

$KEY (READY)
VCUU ALLOW

In the above rule, VCUU is the pseudo operand. It says that any virtual device address
specified as an operand of the READY command matches the rule. Granted, this is a
simple example where a dash rule also works, but consider how useful a pseudo
operand can be in a SPOOL command rule.

36 Command and Diagnose Limiting Guide

Operand Masking Techniques

For example, when writing a rule for the SPOOL command, you probably do not always
know what address the user’s reader is at because he could issue a SPOOL 00C class G
command. It is difficult to account for all possible device addresses or for the possibility
that he could issue a DEFINE command to change the address. But through the pseudo
operand technique, you can determine whether the device address is RDR, PRT, PUN, or
CON. So when writing a rule, you could simply say RDR, controlling all the different
types of readers.

$KEY (SPOOL)
RDR - ALLOW

The next example illustrates how pseudo operands can specify unit record type devices:

$KEY (BACKSPAC)
PRT FILE UID(OPRLEAD) LOG
PRT ##**x %% UJID(OPRLEAD) ALLOW
PUN - UID(OPRLEAD) ALLOW

m SKEY(BACKSPAC) identifies the command.

m Inthe first rule entry, PRT indicates this rule applies to all real printers. This is an
example of using a pseudo operand in a rule. In this example, PRT matches any real
device (raddr) that is attached as a printer. UID(OPRLEAD) indicates lead operators
(any ID that starts with OPRLEAD) can execute a BACKSPAC raddr FILE command,
but the execution is logged. FILE indicates this rule applies when you use the FILE
operand. This becomes part of the command environment. LOG allows the
command, but logs the event.

m |nthe second rule entry, all lead operators are allowed to issue all other forms of
BACKSPAC PRT. *#**#** *** indicates this rule applies for any operand combination
and that these operands are optional. ALLOW allows the command.

m The third rule entry applies to punch devices. It is almost identical to the third rule
entry, except we use the pseudo operand PUN.

Rules for Commands with a Password

Some commands, like AUTOLOG, often require a password operand. Naturally, you do
not want to put a clear text VM directory password in a rule. However, you might want
the rule to force the user to enter the password.

The rule set below shows how to do this.

KEY (AUTOLOG)

SMAINT *- - UID(MAINT) ALLOW
- UID(OPRLEAD1) ALLOW

- UID(OPRLEAD2) ALLOW

- UID(OPRLEAD3) ALLOW

Chapter 2: Rule Writing Guidelines 37

Operand Masking Techniques

The first line identifies the command. If SMAINT is not defined in the VM directory, a
syntax error occurs. In the second rule entry, MAINT can issue an AUTOLOG for the
SMAINT machine. SMAINT indicates the first operand must be SMAINT. For the
AUTOLOG command, the first operand is the user ID of the machine to be autologged.
*- indicates a second operand is required. The second operand is the VM directory
password of the machine being autologged. - indicates the third operand of the
AUTOLOG command is optional and is for variable length data that is passed to the
virtual machine.

The solitary dash (-) says that all operands for the command are masked. According to
these rule entries, the lead operators can execute the AUTOLOG command.

Entering a password on the command line might conflict with a CP operating
requirement that you must enter passwords on a separate line in nondisplay mode. For
more information, contact your systems programmer.

Rules for Storage Type Commands

The DCP, DMCP, and STCP commands are protected at the operand level. Be aware that
special transposition routines are maintained because these commands are complex
and do not follow the strict dependencies that are usually found in the other
commands.

The STORE, DISPLAY, and PER commands are protected only at the command name
level. These commands are not protected down to the operand level for the storage
address type fields. These are virtual storage type commands that can easily be
replicated by any assembler program or the CMS DEBUG facility.

Rules for Repeating Operands

There are some commands whose formats can repeat themselves or are actually
compound commands, such as DCP ml0.10 nl0.10. This is called a compound command.
When CP executes a compound command, the repeating operands are actually treated
as separate commands.

DCP m10.10
DCP n10.10

To make rule writing more consistent and easy to follow, CA ACF2 for z/ VM also treats
this as two separate commands and passes the command through the rule set twice, as
if they were separate. After separating the commands, only those commands that are
authorized by a rule are allowed. For example, a user might be authorized to issue DCP
m10.10, but not authorized to issue DCP n10.10.

38 Command and Diagnose Limiting Guide

Operand Masking Techniques

You can determine if a command repeats by examining its command model. If the
REPEATS verb is specified in the FORMAT or GROUP clause, it is a repeating command.
For more information, see the “Using the Model Setting” chapter.

Rules for Defaults from Other Operands (VALUEFOR)

Commands can obtain a default value for an operand when the command is executed,
as in the ATTACH command, shown below.

ATTACH B8A TO USERA
ATTACH B8A TO USERA AS B8A
ATTACH B8A TO USERA AS BA8

m In the first line, real device B8A is attached to USERA as virtual device B8A. The
virtual device address is obtained from the real device address since none was
specified. You can think of the real device address as being a value for the virtual
device address.

m The next example (second line) is the same as the first, except that the virtual
device address is explicitly specified.

m The third example specifies a virtual device address that is different than the real
device address.

When a command such as ATTACH is processed against an operand with a VALUEFOR
clause, the command limiting interpreter fills in the default value. This is the way CP
would behave, as in the first command example above. However, when you are writing
rules, the VALUEFOR has no special meaning. You must specifically write rules to protect
its object. If this was not true, the following rule would let TLCAMS issue the third
sample command.

$KEY (ATTACH)
B8A - UID(TLCAMS) PREVENT
- UID(*) ALLOW

In the above rule, we want to prevent TLCAMS from issuing the ATTACH command
against the real device B8A, regardless of his privileges (CP or CA ACF2 for z/ VM).

To protect specific values of an object of a VALUEFOR, you must write specific rules. To
specifically control what virtual device address a user can specify for a particular device,
examine the following rule.

$KEY (ATTACH)
58* TO *- AS 18* UID(TLCPAM) ALLOW
- UID(*) ALLOW

In the above example, user TLCPAM can issue the ATTACH command against devices
580-58F. He can attach them to anyone as long as they are attached as virtual addresses
180-18F.

Chapter 2: Rule Writing Guidelines 39

Using NEXTKEY

Using NEXTKEY

The NEXTKEY operand splits a very large rule set into several sets. Specify the rule ID of
an alternate rule set in the NEXTKEY operand. If the environment and permissions of the
current rule set prevents access to a command, CA ACF2 for z/ VM searches the
alternate rule set specified through NEXTKEY.

When NEXTKEY specifies an alternate rule set, a security administrator must grant
authority to whoever is responsible for writing and maintaining that command limiting
rule set through the %CHANGE control statement. This control statement must reside in
the alternate rule set that the security administrator must initially establish.

For a %CHANGE authorization to be active, you must specify the CHANGE operand of
the RULEOPTS VMO record. If you specify NOCHANGE, all %5CHANGE authorizations are
inactive. The default is CHANGE. This default is required to use %CHANGE.

Splitting Rule Sets

As stated before, the NEXTKEY operand splits a command limiting rule set. This may be
necessary to selectively delegate rule maintenance (%CHANGE) authority. Or you may
need to use it if a rule set is very large and exceeds the 4K physical storage size limit.

For example, you can have several entries for a rule set, all under the same CP
command, ATTACH. The NEXTKEY feature can redirect or split the rule set for ATTACH
into smaller sets as follows:

$KEY (ATTACH)

580 TO USERID AS *- NEXTKEY(A)
581 TO USERID AS *- NEXTKEY(B)
582 TO USERID AS *- NEXTKEY(C)

40 Command and Diagnose Limiting Guide

Using NEXTKEY

In the above example, USERID is a pseudo-operand that matches any user ID. The first
three rule entries specify the NEXTKEY rule sets to validate access to real devices 580,
581, and 582. You can then write three smaller rule sets as follows:

$KEY (A)

$MODEL (ATTACH)

%CHANGE SECDIR
- UID(*) ALLOW

$KEY (B)
$MODEL (ATTACH)
%CHANGE OPSDIR

- UID(OPR) ALLOW

$KEY (C)
$MODEL (ATTACH)
%CHANGE PRGDIR

- UID(PRG) ALLOW

These rule sets let you delegate authority through the %CHANGE control statement, but
they are smaller than a single rule set required for the ATTACH command. Specify the
SMODEL control statement to indicate that CA ACF2 for z/ VM is to use this syntax
model during compilation to syntax check the rule entries.

Examining the last three examples, the first rule set for device 580 specifies a %CHANGE
control statement to allow the Director of Security (SECDIR) to change rule entries
governing only device 580. The second rule set grants similar authority to the Director of
Operations (OPSDIR) for device 581. The third rule set grants similar authority to the
Director of Programming (PRGDIR) for device 582.

Computer operators (OPR) can only attach device 581. The second example rule set
(SKEY(B)) allows this access. Similarly, programmers (PRG) can attach device 582
because of the third rule set.

The NEXTKEY operand directs CA ACF2 for z/ VM validation only when access based on
the current rule set is prevented. You can have a chain of up to 25 NEXTKEY operands. If
you specify more than 25, CA ACF2 for z/ VM denies access and writes a KEYEXCES
violation record that appears on the ACFRPTCL report. You cannot reference the same
rule set twice during a single validation. That is, the chain of NEXTKEY options cannot
form a loop. If you reference the same rule set twice, CA ACF2 for z/ VM denies the
access and writes a NKEYLOOP violation record to the ACFRPTCL report. For more
information about ACFRPTCL and NEXTKEY reporting, see the Reports and Utilities
Guide.

Chapter 2: Rule Writing Guidelines 41

Suggested Rules for Sensitive Commands

Suggested Rules for Sensitive Commands

Implementing specific CA ACF2 for z/ VM features and carefully following certain
procedures assures security requirements are met. Recommended settings for CP
commands are described in the following sections.

COUPLE Command

For two virtual machines to establish Virtual Channel-To-Channel Adapters (CTCAs) for
data transfer, they both must issue the DEFINE command. (For information about the
DEFINE command, see the DEFINE and DETACH Command section.) As soon as both
machines establish virtual CTCAs with DEFINE, you can issue the CP COUPLE command
from one of the machines to the other for CTCA data transfer.

With CA ACF2 for z/ VM command limiting, you can log and prevent the use of COUPLE
to control the use of CTCAs for data transfer between two virtual machines. To
implement command limiting for the CP COUPLE command, you must create a
command limiting rule set with a SKEY of COUPLE. For example, to audit CTCA data
transfers between virtual machines, LOG access permission is required.

$KEY (COUPLE)
- UID(-) LOG

DEFINE and DETACH Command

In a C2 environment, you should be able to restrict and log the introduction (and
deletion) of objects into a user’s address space. This means that you must be capable of
both restricting objects to authorized users and auditing the use of the objects.

The DEFINE (privilege class A or B or G) and DETACH (privilege class B or G) commands
control the introduction and deletion of objects into a user’s address space by
establishing and terminating virtual devices, such as T-DISKs (temporary minidisk
storage areas).

DEFINE is a prerequisite for introducing objects through CTCAs; that is, when two virtual
machines establish virtual CTCAs with DEFINE, data transfers can then take place by
linking the CTCAs with the COUPLE command. (For information about the COUPLE
command, see the COUPLE Command section.) When the data transfer is complete, you
can issue DETACH to terminate the virtual CTCAs.

42 Command and Diagnose Limiting Guide

Suggested Rules for Sensitive Commands

IPL Command

With CA ACF2 for z/ VM command limiting, you can log or prevent the use of DEFINE
and DETACH to control how objects can be accessed. To implement command limiting
for the CP DEFINE and DETACH commands, you must create command limiting rule sets
with a SKEY of DEFINE and DETACH. For example, to audit all real and virtual devices
being defined or detached, LOG access rules are required:

$KEY (DEFINE)
- UID(-) LOG

$KEY (DETACH)
- UID(-) LOG

Preferred Machine Assist (PMA) is one of the performance enhancements available for
production guest virtual machines. It lets these machines run in real supervisor state.
Virtual machines that run in real supervisor state can examine or modify any storage on
the machine. They can also execute I/O to any device unchecked. To activate real
supervisor state, the virtual machine must have the V=R or V=F directory option. You
must also IPL the system with the PMA or PMAYV option.

Specify PMA as a parameter on the CP IPL command to enable PMA, such as IPL 440
PMA. This command performs an IPL from device 440 and requests PMA initialization. A
PMAV option also exists that provides the same basic function of PMA with some
extensions.

Absolutely no constraints apply to the 0S/390 V=R guest when running through PMA;
the guest has complete control of the machine until the microcode transfers control
back to VM. Therefore, you might want to prevent a V=R untrusted guest from invoking
PMA or PMAV.

To prevent IPL ccu PMA and IPL ccu PMAV while allowing other forms of the CP IPL
command, use a rule such as the one shown below.

$KEY (IPL)
- PM- - UID(*) PREVENT
- PM- - UID(PRODSYS) ALLOW
- UID(-) ALLOW

In the above rule, only the 0S/390 production user can IPL PMA or PMAV. All other
users are prevented from IPLing PMA and PMAV. All other IPLs are allowed.

Chapter 2: Rule Writing Guidelines 43

Suggested Rules for Sensitive Commands

LINK Command

The CP LINK command lets you link to another user’s disks in various modes. These link
access modes are shown below:

R
Primary read-only access. You can establish a read-only link only if no one else is
linked to the disk in write mode. Otherwise, no link is established.

RR
Primary read-only access or alternate read-only access. You can only establish a
read-only link, no matter what other links users have to the disk.

w
Primary write access. You can establish a write link only if no other user is linked to
the disk. Otherwise, no link is established.

WR
Primary write access or alternate read-only access. You can establish a write link
only if no other user is linked to the disk. Otherwise, this user is linked as read-only.

M
Primary multiple access. You can establish a write link unless some other user
already is linked in write mode. Otherwise, no link is done.

MR
Primary multiple access or alternate read access. You can establish a write link
unless some other user already is linked in write mode. If some other user is already
linked MR, a read-only link is done.

MW

Primary multiple access or alternate write access. A user is established as a write
link in all cases.

We suggest you limit the LINK command since it is not advisable to have more than one
user updating a file at the same time.

44 Command and Diagnose Limiting Guide

Suggested Rules for Sensitive Commands

Through command limiting, you can control who can link to your disk and the type of
access mode that is valid for that user. The rule below lets TLCPJM link in primary write
access mode or alternate read-only access mode to TLCAMS 191 disk. All other users
whose logon ID begins with TLC can link to this disk in read-only or alternate read-only
access mode:

$KEY (LINK)

TLCAMS 191 - W* UID(TLCPJM) ALLOW
TLCAMS 191 - R* UID(TLC) ALLOW
DOC - - R* UID(-) ALLOW

TLCAMS 191 - MW UID(-) PREVENT
DOC - - MW UID(-) PREVENT

The third rule entry specifies that all users can access any DOC disk in read-only access
mode or alternate read-only mode. The last two entries prevent anyone from linking
multiple write to the TLCAMS 191 and any DOC disks.

Do not be confused. The LINK command only allows the link. If you have installed CMS
protection, you still need to write access rules to allow users to update or read files on
your disk.

Chapter 2: Rule Writing Guidelines 45

Suggested Rules for Sensitive Commands

SET Command

VM has a system directory option that is designed to improve system performance. This
option, known as V=F on VM systems, designates a virtual machine as the owner of real
storage; it is specified in the system directory for a given virtual machine with OPTION
VIRT=REAL (Virtual=Real) or OPTION VIRT=FIXED (Virtual=Fixed).

A guest operating system usually generates vast amounts of I/O operations for its own

paging and application program processing. Not surprisingly, there is an accompaniment
to the V=R option that shortens the path of Input/Output (1/0O) processing in a V=R guest
machine. This accompaniment is implemented with the CP command SET NOTRANS ON.

Normally, when a V=R guest requests some |/O operation, a string of commands is
passed to the I/O device informing it what and how much data to read or write. CP
scans, checks, and translates the string of commands, making sure the 1/0 operation
request is valid for the guest. This validation checks to make certain that the return area
for the data from a read I/O operation is in the virtual machine’s storage. This check
prevents one virtual machine from reading data into another virtual machine’s storage.

This scanning and checking involves considerable overhead on the part of CP. Because a
guest V=F operating system is generally considered a trusted guest (its integrity as a
functional operating system can be trusted), it can avoid the translational overhead
through the CP SET NOTRANS ON command. This command skips the translation
process, trusting the guest to ensure that the I/O command strings are correct.

The CP SET NOTRANS ON command represents an integrity exposure. By manipulating
the 1/0 request command string, the guest can alter the pages of real storage outside
the realm of the V=R area (circumvent hardware and software storage protection
mechanisms). Therefore, a V=R guest could be prevented from issuing a SET NOTRANS
ON command. Obviously, you must consider the extra overhead that is incurred if you
prevent SET NOTRANS ON.

You can use command limiting to prevent SET NOTRANS ON and allow other forms of
the CP SET command. Create a CP SET command limiting rule with a SKEY of SET.

$KEY (SET)
NOTRANS ON UID(-) PREVENT
- UID(-) ALLOW

46 Command and Diagnose Limiting Guide

Suggested Rules for Sensitive Commands

Here, all forms of the CP SET command are allowed except SET NOTRANS ON.

When the IBM SYSRES macro SYSCLR keyword is set to YES in HCPSYS, native VM CP
code automatically clears temporary disk space when a user allocates it. IBM lets Class B
users turn off TDISK clearing with the CP SET TDISKCLR OFF command. To avoid this
integrity exposure, we strongly recommend you limit the use of this command:

$KEY (SET)
TDISKCLR OFF UID(-) PREVENT

In the rule above, all users are prevented from executing the SET TDISKCLR OFF
command.

SHUTDOWN Command

The CP SHUTDOWN command lets a class A user end all VM system functions, disable
communication lines, checkpoint the system for a warm start, save enabled virtual
machines to be saved, and automatically do a warm start. We strongly recommend that
you implement command limiting for the SHUTDOWN command on CPUs that do not
support POWEROFF. Otherwise, an invalid SHUTDOWN command shuts down the
service machine, but CP does not shut down, perhaps resulting in users or the system
being hung.

To restrict use of the CP SHUTDOWN command, create a command limiting rule with a
SKEY of SHUTDOWN.

$KEY (SHUTDOWN)
- UID(operator) LOG
POWEROFF UID(*) PREVENT

Here, only users with the OPERATOR UIDs are allowed SHUTDOWN access to the
secured CPU. All such events are logged. Anyone else who attempts to SHUTDOWN this
machine is prevented, with the event logged.

Chapter 2: Rule Writing Guidelines 47

Chapter 3: Using the ACF Command
(CMDLIM Setting)

This chapter explains the ACF subcommands listed below. You should also review the
“Rule Writing Guidelines” chapter to obtain a full understanding of how rules are
interpreted. Use this chapter as a reference aid when you want to create, modify,
display, test, or list command limiting rule sets.
The following commands are explained in this chapter:
COMPILE
Converts rule sets into the form needed by CA ACF2 for z/ VM.
DECOMP
Lists previously stored rule sets
DELETE
Deletes command limiting rule sets
LIST
Lists previously stored rule sets
STORE
Stores compiled rule sets on the Infostorage database
TEST

Tests the correctness of a rule set.

This section contains the following topics:

Creating a Rule Set (see page 50)

ACF Subcommands (see page 50)
COMPILE Subcommand (see page 51)
DECOMPILE Subcommand (see page 54)
DELETE Subcommand (see page 56)
STORE Subcommand (see page 57)
TEST Subcommand (see page 58)

Chapter 3: Using the ACF Command (CMDLIM Setting) 49

Creating a Rule Set

Creating a Rule Set

You can create command limiting rule sets directly from the terminal or by first building
the rule set in a file. The general procedure is:

m Build a command limiting rule set in a standard CMS file. Normally, the file name of
the rule is the same as the command name. The file type is always RULE.

m From CMS, issue the ACF command.

m After issuing the ACF command, establish the CMDLIM setting (SET CMDLIM, SE
CMDLIM, or T CMDLIM).

acf

ACF

set cmdlim
CMDLIM

m To interactively compile from the terminal, issue the COMPILE subcommand
without a filename. The COMPILE subcommand lets you enter the control
statements and rule entries at the terminal. To compile from a CMS file, issue the
COMPILE subcommand with the name of the file that contains the rule set text.

m To test the rule set, issue the TEST subcommand. The TEST subcommand can give
you an idea of whether the rule set does the validation of CP command execution
as you intended.

m By default, the COMPILE subcommand automatically stores the rule set on the
Infostorage database if the rule set was compiled from a CMS file. If rule input is
entered directly from the terminal, you must issue the STORE subcommand.

m After you store a command limiting rule set, it is effective on the database and in
the rule set cache.

ACF Subcommands

You can process command limiting rules after establishing the CMDLIM setting of the
ACF command.

acf

ACF

set cmdlim
CMDLIM

Under the CMDLIM setting, you can issue any of the following ACF subcommands:

s COMPILE
m CMS
s DECOMP

50 Command and Diagnose Limiting Guide

COMPILE Subcommand

m DELETE
m END

m HELP

m LIST

m SET

= SHOW
m STORE
m TEST

For information about the common subcommands END, HELP, SET, and SHOW, see the
Administrator Guide.

The other commands, specific to the CMDLIM setting, are explained in this chapter.

COMPILE Subcommand

The COMPILE subcommand creates a set of command limiting rules. CA ACF2 for z/ VM
provides two ways of compiling command limiting rule sets: directly at the terminal or
using text in a CMS file as input to the compiler.

Compiling Directly at the Terminal

You can enter a command limiting rule set from the terminal as follows:

Enter the COMPILE subcommand without parameters.

m Enter the SKEY control statement on the first line.

m Enter the other control statements, each on a separate line.
m Enter all rule entries, each on a separate line.

® To end the rule set, press Enter to enter a blank line.

® The COMPILE subcommand automatically ends.

m Enter the STORE command to save the rule set on the Infostorage database.

Chapter 3: Using the ACF Command (CMDLIM Setting) 51

COMPILE Subcommand

A full example of this follows:

acf
ACF
set cmdlim
CMDLIM
compile
ACFpgm510I ACF compiler entered
$key (spool)
con purge uid(****opr) log

print copy - allow
print rscs allow

ACFpgm551I Total record length='length' byte - 'percent' percent utilized
CMDLIM

store

ACFpgm769I Rule 'ruleid' stored

You should test a rule before actually storing it to determine if it performs as you
intended. For examples of how to test rules, see the section Test Subcommand.

Compiling from a CMS File

You can also enter the control statements and rule entries into a CMS file to create a
command limiting rule set. The file must have a file type of RULE. Each control
statement or rule entry must be on a separate line. The last line does not have to be a
blank line.

xedit spool rule a
(goes to edit screen)
$key (spool)
con purge uid(****opr) log
print copy - allow
print rscs allow
file (to save the file)

52 Command and Diagnose Limiting Guide

COMPILE Subcommand

After you enter the control statements and rule entries into the file, you can invoke CA
ACF2 for z/ VM and compile the command limiting rule set. Save the file. Issue the
COMPILE subcommand with the name of the file.

acf
ACF
set cmdlim
CMDLIM
compile spool
ACFpgm510I ACF compiler entered
. (display of compiled rule set)
ACFpgm551I Total record length='length' byte - 'percent' percent utilized
ACFpgm768I Rule 'ruleid' replaced

You specify only the file name. The file type is always RULE. The rule set is compiled and,
by default, stored.

Syntax of the COMPILE Subcommand

The full syntax of the COMPILE subcommand is shown below.

COmpile {* } [List |NOList]
{ filename} [Store|NOStore]
[Force|NOForce]

Under the CMDLIM setting, the COMPILE subcommand takes the parameters listed
below.

*

Indicates that the text subsequently entered is input to the compiler. In an online
environment, the system prompts you to enter the rule text directly from the
terminal. Using the COMPILE subcommand without parameters is equivalent to
specifying an asterisk.

filename

Specifies the CMS file that contains the command limiting rule text to be compiled.
The file type is always RULE.

List| NOList

The LIST parameter displays the input to the compiler on your screen or printed on
your listing during compilation of a rule set. NOLIST does not display or list. LIST is
the default when you compile from a CMS file. Otherwise, NOLIST is the default.

STore|NOStore

The STORE parameter automatically stores the rule set at compilation time.
NOSTORE does not store the rule set. STORE is the default if you compile the rule
set from a CMS file. Otherwise, NOSTORE is the default.

Chapter 3: Using the ACF Command (CMDLIM Setting) 53

DECOMPILE Subcommand

Force|NOForce

The FORCE parameter stores the command limiting rule set regardless of whether it
currently exists. NOFORCE stores the command limiting rule set only if it does not
already exist. FORCE is the default.

When used as parameters of the COMPILE subcommand, FORCE [NOFORCE applies
only to the COMPILE subcommand that you are currently issuing. When used as
parameters of the SET subcommand, FORCE|NOFORCE is in effect until you change
it or until you end the ACF command. It is not affected by changes in the ACF
command setting.

DECOMPILE Subcommand

The DECOMP subcommand retrieves a command limiting rule set that has been
previously compiled and stored. This subcommand is useful for examining, updating,

testing, or changing rule sets. You can decompile a rule set at the terminal or into a CMS
file.

Syntax of the DECOMP Subcommand

The DECOMP subcommand has the following syntax.

{* }
DEComp { ruleid } [MDLTYPE(|mdltype|mdlmask)]
{ LIKE(rulemask)} [INTO(filename)]

When you decompile the rule set into a CMS file, its record length is limited to 80
characters. Any existing rule exceeding 80 characters is broken into continuation lines
(signified by a dash (-) at the end of the line). The compiler still accepts input files from
previous releases that have record lengths up to 256 characters.

The DECOMPILE subcommand takes the parameters listed below.

*

Decompiles the last rule set brought into storage since you established the CMDLIM
setting.

ruleid
Specifies the key of an individual rule set to be decompiled or listed.
LIKE(rulemask)

Specifies a mask of rule IDs for decompiling a group of rule sets.

54 Command and Diagnose Limiting Guide

DECOMPILE Subcommand

MDLTYPE(| mdltype | mdimask)

Specifies the model type of the rules to be decompiled. If you used the
LIKE(rulemask) parameter, you can mask the MDLTYPE, as in DEC LIKE(ATTACH-)
MDLTYPE(-) INTO(RULE). If you specified MDLTYPE(), CA ACF2 for z/ VM decompiles
the rule sets written under previous releases of CA ACF2 for z/ VM.

If you do not define a MDLTYPE, CA ACF2 for z/ VM uses the default as specified in
the CMDLIM VMO record.

INTO(filename)

Specifies the name of a CMS file where the rule set is decompiled. You cannot
specify the file type, because a file type of RULE is always assigned.

How to Use the DECOMP Subcommand

Below are two examples that show how you can use the DECOMP subcommand. This
first example shows how you can use DECOMP to display a rule set on your terminal.

acf
ACF
set cmdlim
CMDLIM
decomp spool mdltype(530)
ACFpgm762I 530 SPOOL stored by VMISO on 05/28/07-17:30
$KEY (SPOOL) MDLTYPE(530)
CON PURGE UID(****QOPR) LOG
PRINT COPY - ALLOW
PRINT RSCS ALLOW
ACFpgm551I Total record length=245 byte - 5 percent utilized
CMDLIM

The next example shows how DECOMP can write a rule set into a CMS file. Writing a
rule set into a CMS file is very useful because it lets you easily change an existing rule set
and then recompile it. It can also save time if you misspell a keyword.

acf

ACF

set cmdlim

CMDLIM

dec spool into(rulefile)

ACFpgm556I 'rule' rule 'key' stored by 'lid' on 'date’

ACFpgm551I Total record length='length' byte - 'percent' percent utilized
CMDLIM

cms xedit rulefile rule a

Chapter 3: Using the ACF Command (CMDLIM Setting) 55

DELETE Subcommand

Because you did not specify MDLTYPE, this rule was decompiled with the default model
as defined in your CMDLIM VMO record (in this case, SP6).

ACFpgm556I 'rule' rule 'key' stored by 'lid' on 'date’
$KEY (SPOOL) MDLTYPE(530)
CON PURGE UID(****QOPR) LOG
PRINT COPY - ALLOW
PRINT RSCS ALLOW
ACFpgm551I Total record length='length' byte - 'percent' percent utilized

To decompile all rules with a particular model type, enter the following command,
where mdltype is the model type of the commands you want to decompile:

DECOMP MDLTYPE (mdltype)

To decompile all spool rules, use the command DECOMP SPOOL MDLTYPE().

DELETE Subcommand

The DELETE subcommand removes a command limiting rule set and syntax models from
the Infostorage database. To delete command syntax models, you must have set the
ACF MODE to MODEL.

Syntax of the DELETE Subcommand

The DELETE subcommand has the syntax shown below.

DELete { ruleid } [MDLTYPE (mdltype |mdlmask)]

{ LIKE(rulemask)}
The DELETE subcommand takes the parameters listed below.
ruleid

Specifies the ID you want to delete. If you specify a MDLTYPE, only the rule for that
model type is deleted.

LIKE(rulemask)

Deletes all rules that match the rule mask. If you do not specify MDLTYPE, only rules
that match the current MDLTYPE are deleted.

MDLTYPE(mdItype | mdimask)

Deletes the rule set under a specific operating system. Masking the MDLTYPE
deletes rules for operating systems that match the mdlmask.

56 Command and Diagnose Limiting Guide

STORE Subcommand

STORE Subcommand

The STORE subcommand places a previously compiled set of command limiting rules
onto the Infostorage database. You must have authority to store the rule. This authority
is granted through the SECURITY privilege or through the %CHANGE or %RCHANGE
control statements. If you are not authorized to store the rule, the operation is rejected.

Syntax of the STORE Subcommand

The STORE subcommand has the following syntax:

STore { Force }
{ NOForce}

This subcommand accepts one parameter:

Force

The default of FORCE stores a rule set even it already exists. In this case, the new
version of the rule set replaces the existing version.

NOForce

NOFORCE stores the rule set only if it does not already exist. If the rule does exist,
then NOFORCE rejects the store operation.

There is a SET FORCE|NOFORCE subcommand that defaults to SET FORCE. You can use
the FORCE|NOFORCE parameter of STORE to override the SET value, or use the SET
subcommand to change the defaults for the STORE subcommand. For example, you
could issue a SET NOFORCE that effectively changes the default of STORE FORCE to
STORE NOFORCE.

Chapter 3: Using the ACF Command (CMDLIM Setting) 57

TEST Subcommand

How to Use the STORE Subcommand

The example below shows how to use the STORE subcommand:

acf
ACF
set cmdlim
CMDLIM
compile
ACFpgm510I ACF compiler entered
$key (spool)
con purge uid(****opr) log
print copy - allow
print rscs allow
- uid(*) allow

ACFpgm551I Total record length='length' byte - 'percent' percent utilized
CMDLIM

store

ACFpgm769I Rule SPOOL stored

TEST Subcommand

The TEST subcommand puts you in an environment where you can interactively test a
compiled command limiting rule set. Testing can give you an idea of whether the rule
set provides the protection you want.

Syntax of the TEST Subcommand

The syntax of the TEST subcommand is shown below.

TEST { * } [MLTYPE (mltype)]
{ ruleid}

The TEST subcommand takes the following parameters:

*

Tests a previously compiled (but not necessarily stored) or decompiled command
limiting rule set.

(no parameter)

When specified without a parameter, the TEST subcommand operates the same as
when you specify an asterisk.

58 Command and Diagnose Limiting Guide

TEST Subcommand

ruleid
Identifies the key of a command limiting rule set to be tested.
MDLTYPE(mdItype)

Specifies the operating system and release of the rule to be tested. If you do not
specify a MDLTYPE, CA ACF2 for z/ VM uses your default model type (as defined in
the CMDLIM VMO record).

TEST Subcommand Keywords

After you have issued the TEST subcommand along with any of the parameters
described, the TEST subcommand is active. You can enter any of the keywords and
values described below to specify a test access environment. You must separate each
keyword with a blank character. You can enter all keywords on a single line or use
separate lines to enter each keyword.

OPERANDS(operands)

Specify the OPERANDS keyword with the CP command operands to be tested.
These operand names must be separated by blank characters. You cannot mask the
command operands. You do not need to specify the CP command name since it is
taken from the rule ID. You can also use the abbreviation O for OPERANDS.

UID(uidmask)

Specify the UID keyword with the UID string identifying the user to be tested. You
can mask this UID string. To specify this keyword, you do not need access to the
corresponding logonid record. If you specify both LID and UID, CA ACF2 for z/ VM
uses the last LID or UID value specified. For example, if you specify LID(TLCJID)
UID(TLCNLT), CA ACF2 for z/ VM uses only UID(TLCNLT). If you do not specify a
CLASS, the testing function uses your current class.

LID(lid)

Specify the LID keyword with the logon ID identifying the user to be tested. You
cannot mask this logon ID . To specify this keyword, you do not need access to the
corresponding logon ID record. It will be obtained from the service machine for
testing purposes. If you specify both LID and UID, CA ACF2 for z/ VM uses the last
LID or UID value specified. For example, if you specify UID(***TLCNLT) LID(TLCJID),
CA ACF2 for z/ VM uses only LID(TLCJID). If you do not specify a CLASS, the testing
function obtains the CP privilege class for the indicated logon ID from the VM
directory.

Chapter 3: Using the ACF Command (CMDLIM Setting) 59

TEST Subcommand

CLASS(classes)

Specify the CLASS keyword with the CP privilege classes that you want to test the
command operands against. Valid classes are A through Z and 1 through 6. Only
those classes that apply to the particular release of VM you are running match the
classes on the command models. Using the CLASS keyword can be particularly
useful if you are testing rules for groups of users. If you do not specify either an
unmasked logon ID or classes, your current CP privilege class is used for testing
purposes. If you do not specify a CLASS, the testing function obtains the CP privilege
class for the indicated UID from the VM directory.

DATE(date)

Specify the DATE keyword with the date to be tested. This date must be in the
format selected during installation of CA ACF2 for z/ VM (mm/dd/yy, dd/mm/yy, or
yy/mm/dd). The current date is assumed as a default.

SOURCE(sourceid)

Specify the SOURCE keyword with the logical name of the input source or source
group.

TIME(hhmm)

Specify the TIME keyword with the time, in hours (hh) and minutes (mm). CA ACF2
for z/ VM uses this time to test the access.

How to Use the TEST Subcommand

Suppose you just compiled or decompiled a command limiting rule set with the key
SPOOL:

acf
ACF
set cmdlim
CMDLIM
decomp spool
ACFpgm5561 'rule' rule 'key' stored by 'lid' on 'date'
$KEY (SPOOL) MDLTYPE(530)
$USERDATA (PROTECT THE SPOOL COMMAND)
CON PURGE UID(****QOPR) LOG
PRINT COPY - ALLOW
PRINT RSCS ALLOW
- UID(*) ALLOW
ACFpgm551I Total record length='length' byte - 'percent' percent
utilized
CMDLIM

60 Command and Diagnose Limiting Guide

TEST Subcommand

The TEST subcommand could then be issued:

te
ACFpgm742I CMD='cmd', MDLTYPE='model'
ACFpgm734I USERDATA contents: 'text'

At this point, the TEST subcommand is active. Because we did not specify a MDLTYPE in

the DECOMP SPOOL subcommand line, CA ACF2 for z/ VM uses E21 (the site default) for
the MDLTYPE. You can now enter any of the TEST subcommand keywords to specify the
particular environment that you want to test.

For example, the following keywords test whether the command limiting rule set named
SPOOL lets TLCNOPRNAS execute the SPOOL command with the operands CON and
PURGE.

operands(con purge) UID(tlcnoprnas)

ACFpgm740I The following parameters are in effect:
UID=TLCNOPRNAS SQURCE=**s¥kskkx

DATE=11/28/00 TIME="ttxskokok

CLASS:********

OPERANDS=CON PURGE

THE FOLLOWING WOULD APPLY: LOG
(RELATIVE RULE ENTRY 00001)
.(signals you can enter more TEST subcommand keywords)
end (signals the end of TEST subcommand)
CMDLIM

We recommend you decompile before a test so you can see how CA ACF2 for z/ VM
sorted your rule entries. If you do not decompile first, the TEST command results can be
deceiving (TEST may report a relative rule entry 0003 applied when you know that the
first rule entry you wrote should apply).

While the TEST subcommand is active, only command limiting rule interpretation is
done. This testing does not take into account any virtual machine configurations, such
as virtual unit record devices. Your unit record configuration is used. This should not
cause any problems if you used the pseudo operand rule writing technique described
earlier (if your virtual console was at 009 and the user's console was at 00A.) You could
specify CON or 009 to test the SPOOL command and have the CON rule apply. When the
user whose virtual console was at 00A issued a SPOOL 00A..., the CON rule applies.

Chapter 3: Using the ACF Command (CMDLIM Setting) 61

TEST Subcommand

How to Interpret TEST Results

As you can see in the previous example, CA ACF2 for z/ VM responds to the TEST
request by displaying all of the current values that describe the environment being
tested. At the bottom of the display is an indication of whether the command with the
specified operand combination is allowed, logged, denied, or if there are any overrides,
such as SYNERR or security. In the previous example, the result is that user TLCNOPRNAS
is allowed to execute the CP command with the specified operand combination. The
first rule entry in the rule set (as sorted by CA ACF2 for z/ VM) allowed the execution.
Nearly all keyword values that are not specified are assumed to be completely masked,
by default. (The values for the DATE, CLASS, and OPERANDS keywords are the only
exceptions.) For instance, if you do not specify the UID keyword, the subcommand tests
whether all UIDs are allowed access. For an explanation on how CA ACF2 for z/ VM
obtains the CP privilege CLASS, see the LID and CLASS keywords in the TEST
Subcommand Keywords section.

The results of the TEST subcommand show whether execution of the specified format of
the CP command is allowed, logged, or prevented.
ALLOW
Access is allowed
LOG
Access is allowed but logged
PREVENT
Access is specifically prevented.

If no rule entry specifically applies to the test access environment, CA ACF2 for z/ VM
displays the following message:

No rules apply, access would be denied

After a result is displayed, you can enter other keywords and values to specify another
environment for testing. The END subcommand stops the TEST subcommand.

62 Command and Diagnose Limiting Guide

Chapter 4. Using the ACF Command
(DIAGLIM Setting)

Diagnose limiting rules validate a user's authority to issue a diagnose instruction with a
particular diagnose code. This validation occurs after normal CP user class validation for
diagnose instructions.

Diagnose limiting rules are stored on the Infostorage database in a storage class known
as the limiting class. This class, identified by L, includes both diagnose limiting and
command limiting rules. Rules for diagnose limiting have a type code of VRD in the L
storage class.

Loggings and violations that occur during the execution of diagnose instructions are
recorded in SMF records. You can analyze these records through the Command Limiting
Journal (ACFRPTCL). For more information, see the chapter “Running the Command
Limiting Report (CL)” in the Reports and Utilities Guide.

SECURITY, NON-CNCL, and READALL attributes do not grant any special privilege for
diagnose limiting. These attributes bypass access validation only for data access rules
and resource rules.

To implement diagnose instruction validation:

m Create the diagnose limiting rule sets. All diagnose limiting rule set processing is
done under the DIAGLIM setting of the ACF command. You do not need to specify
the type code for diagnose limiting rules when you establish the DIAGLIM setting.
For the complete syntax for a diagnose limiting rule set, see Syntax of a Rule Set in
the chapter “Rule Writing Guidelines.”

m Specify the diagnose codes to include or exclude from validation through the
DIAGLIM VMO record.

m Establish the mode for diagnose limiting validation. This mode is independent of the
CA ACF2 for z/ VM system mode and is specified through the DIAGLIM VMO record.

m Write diagnose limiting rules for each diagnose code that you want to control in #2
above.

Chapter 4: Using the ACF Command (DIAGLIM Setting) 63

Internal Diagnose Codes

Remember, you must define all diagnose codes that are or are not subject to diagnose
limiting rule set validation. For each diagnose instruction specified in this operand, you
must write a single diagnose limiting rule set.

The rest of this chapter provides information on creating and maintaining the diagnose
limiting rule sets. For more information about establishing the diagnose code and mode,
see the chapter “Defining Structured Infostorage Records” in the Administrator Guide.

This section contains the following topics:

Internal Diagnose Codes (see page 64)

POSIX Diagnose Calls (see page 64)

Sample Diagnose Limiting Rule Set (see page 65)
Creating a Rule Set (see page 65)

ACF Subcommands (see page 66)

COMPILE Subcommand (see page 66)
DECOMPILE Subcommand (see page 69)

DELETE Subcommand (see page 70)

STORE Subcommand (see page 70)

TEST Subcommand (see page 71)

Internal Diagnose Codes

The ACF command SRF and most other CMS-based CA ACF2 for z/ VM programs use
diagnose codes ACF2 and OACF to communicate with code running in CP. CA ACF2 for z/
VM has built-in protection for these codes. We recommend that you do not limit them.
For example, SRF applications cannot perform validations or modify database records
unless the user has the appropriate authorization. However, if you code an INCLUDE
ALL in the DIAGLIM VMO record, be sure to write a rule allowing for both the ACF2 and
OACF diagnoses.

POSIX Diagnose Calls

In Portable Operating Systems Interface for Computing Environments (POSIX), CP lets
users inquire on the contents of the POSIX database through new CP diagnose calls.
These calls extract POSIX database runtime information or issue setid() requests.

64 Command and Diagnose Limiting Guide

Sample Diagnose Limiting Rule Set

These new CP diagnose calls are:

x'2A4' - get a PID from CP
x'29C' - set POSIX IDs (plist SPXBK)

setuid()
seteuid()
setgid()
setegid()
newgrp - shell utility

x'2A0' - query POSIX IDs (plist QPXBK)

query process attributes

query user database

query group database

query SGIDs for process or user
query POSIX config info

Sample Diagnose Limiting Rule Set

A diagnose limiting rule set is identified through a SKEY value of DIAGnnnn, where nnnn
is the four-digit hexadecimal code for the diagnose instruction. You could use the
following rule set to validate a diagnose instruction with code 0004:

$KEY (DIAGO004)
UID(TLCLLS) ALLOW

This rule set lets TLCLLS issue a diagnose instruction with the code X'0004'. Through this
diagnose code, you can manipulate input spool files.

Creating a Rule Set

You can create diagnose limiting rule sets directly from the terminal or by building the
rule set in a CMS file. The general procedure is:

Build the diagnose limiting rule set text in a file (explained later).
Issue the ACF command from CMS.
Enter SET DIAGLIM to establish the DIAGLIM setting.

To compile from a CMS file, issue the COMPILE subcommand with the name of the
file that contains the rule set text.

To compile directly from the terminal, issue the COMPILE subcommand without a
filename. You can enter the control statements and rule entries one at a time at the
terminal when you issue the COMPILE subcommand.

To test the rule set, enter the TEST subcommand. This gives you an idea of whether
the rule set does the intended validation for execution of diagnose instructions.

Chapter 4: Using the ACF Command (DIAGLIM Setting) 65

ACF Subcommands

m If you compile the rule set from a CMS file, the COMPILE subcommand
automatically stores the rule set on the Infostorage database. If you compile the
rule set directly from the terminal, you must issue the STORE subcommand.

m After you store a diagnose limiting rule set, it is effective on the database and in the
running system if the particular diagnose code is being modified.

ACF Subcommands

You create, display, and maintain diagnose limiting rules using the ACF subcommands.
To process the rules, establish the DIAGLIM setting of the ACF subcommand.

acf

ACF

set diaglim
DIAGLIM

Again, you do not specify the type code for diagnose limiting rules when you establish
the DIAGLIM setting. The following ACF subcommands are valid to process diagnose
limiting rule sets under the DIAGLIM setting:

= COMPILE
m DECOMP
m DELETE
= END

= HELP

m LIST

= SHOW

m STORE

m TEST

The END, HELP, SET, and SHOW subcommands are valid under all ACF settings. For more
information about these subcommands, see the Administrator Guide.

The other subcommands are explained in the following sections.

COMPILE Subcommand

The COMPILE subcommand compiles the diagnose limiting rule set. CA ACF2 for z/ VM
provides two ways of compiling diagnose limiting rule sets: directly at the terminal or
using text in a CMS file as input to the compiler.

66 Command and Diagnose Limiting Guide

COMPILE Subcommand

Compiling Directly at the Terminal

Compiling from

To enter a diagnose limiting rule set directly from the terminal, enter the COMPILE
subcommand without parameters:

COMPILE
ACFpgm510I CA-ACF2 compiler entered

To begin, enter the SKEY control statement on the first line. Enter the other control
statements and then the rule entries, each on a separate line. After entering each line of
information, press Enter or the return key.

DIAGLIM

COMPILE
ACFpgm510I CA-ACF2 compiler entered

$KEY (DIAGO004)
UID (*****0PR) LOG
UID (*****TEC) ALLOW

ACFpgm551I Total record length=194 bytes - 4 percent utilized
DIAGLIM

When you are finished adding entries to the rule set, press Enter or the return key
without adding any text. The COMPILE subcommand automatically ends. After you
compile the diagnose limiting rule set, you can use the TEST subcommand to see if the
rule set performs as you intended.

a CMS File

To create a diagnose limiting rule set, enter the control statements and rule entries in a
CMS file. The file must have a filetype of RULE. Enter each control statement or rule
entry on a separate line.

Assume that the following text was input into a file named DIAGFILE with a filetype of
RULE.

$KEY (DIAGO004)
UID(OPR) LOG
UID(TEC) ALLOW

Chapter 4: Using the ACF Command (DIAGLIM Setting) 67

COMPILE Subcommand

After you enter the control statements and rule entries in the file, invoke CA ACF2 for z/
VM and compile the diagnose limiting rule set using the COMPILE subcommand under
the DIAGLIM setting. Specify the filename following the COMPILE subcommand:

DIAGLIM
compile diagfile

Indicate only the filename; the filetype is assumed to be RULE. The rule set is compiled
and, by default, stored.

After you compile the diagnose limiting rule set, you can use the TEST subcommand to
see if the rule set performs the intended validation of attempts to issue a diagnose
instruction.

Syntax of the COMPILE Subcommand
Under the DIAGLIM setting, the COMPILE subcommand has the following syntax.

COmpile * } [List|NOList 1]
filename } [Store|NOStore]

[Force|NOForce]

-

Indicates that the text is input to the compiler. In an online environment, the
system prompts you to enter the diagnose limiting rule text directly from the
terminal.

(no parameters)

Using the COMPILE subcommand without parameters is the same as specifying an
asterisk (*).

filename

Specifies the CMS filename that contains the diagnose limiting rule text to compile.
The filetype is always RULE.

LIST|NOLIST

LIST displays the input to the compiler on your screen or printed on your listing
when you compile the rule set. NOLIST does not display on your screen or listing.
LIST is the default when compiling from a CMS file. Otherwise, NOLIST is the
default.

STORE|NOSTORE

STORE stores the rule set after it is compiled. NOSTORE does not automatically
store the rule set. STORE is the default if you are compiling the rule set from a CMS
file. Otherwise, NOSTORE is the default.

68 Command and Diagnose Limiting Guide

DECOMPILE Subcommand

FORCE | NOFORCE

FORCE (the default) stores the diagnose limiting rule set even if it currently exists.
NOFORCE only stores the rule set if it does not already exist. When you use
FORCE |[NOFORCE as a parameter of the COMPILE subcommand, it only applies to
the COMPILE subcommand you are currently issuing. FORCE | NOFORCE is in effect
until you change it or until you end the ACF command. Changes in the ACF
command setting do not affect this setting.

CA ACF2 for z/ VM provides two ways of compiling a diagnose limiting rule set: From a
CMS file or directly at the terminal.

DECOMPILE Subcommand

Under the DIAGLIM setting, the DECOMP subcommand decompiles a diagnose limiting
rule set. Use it to examine, update, test, or change a diagnose limiting rule set. You can
decompile a diagnose limiting rule set at the terminal or into a CMS file to keep for later
reference.

Syntax of the DECOMP and LIST Subcommands

Under the DIAGLIM setting, the LIST subcommand is a synonym for DECOMP and
performs a similar function.

DEComp { * }
{ ruleid } [INTO(filename]
List { LIKE(rulemask)}

Decompiles the diagnose limiting rule set as previously compiled and stored.

ruleid

Specifies the SKEY value of the diagnose limiting rule set to decompile. It is always
in the form DIAGnnnn, where nnnn is the four-character code of the diagnose
instruction.

LIKE(rulemask)

Specifies a mask of rule IDs for decompiling a group of diagnose limiting rule sets.
The CMS file containing rules created by the DECOMP LIKE(-) function no longer
have a record length greater than 80 characters. Any rule text exceeding 80
characters is changed into continuation lines. This makes editing and printing the
file easier. However, the compiler continues to accept input files that exist from
previous releases that have record lengths up to 256 characters.

Chapter 4: Using the ACF Command (DIAGLIM Setting) 69

DELETE Subcommand

INTO(filename)

Specifies the CMS file where the diagnose rule set is decompiled. You do not need
to specify the file type, since a file type of RULE is always assumed.

DECOMP DIAGOOO6 INTO(DIAGOOO6)

ACFpgm762I DIAGOOO6 STORED BY VMSA ON 01/13/07
ACFpgm551I TOTAL RECORD LENGTH=128 BYTES - 25 PERCENT UTILIZE

This example subcommand decompiles the DIAG0O006 rule set into a file named
DIAGO006 RULE.

DELETE Subcommand

Under the DIAGLIM setting, the DELETE subcommand deletes a diagnose limiting rule
set.

Syntax of the DELETE Subcommand
Listed below is the syntax of the DELETE subcommand under the DIAGLIM setting.

DELete { ruleid }
{ LIKE(rulemask)}

ruleid
Deletes the specified rule ID.

LIKE(rulemask)

Deletes all rule sets that match the mask.

The following DELETE subcommand deletes the diagnose limiting rule set for diagnose
instruction X'0018".

DELETE DIAGO018
CA ACF2 for z/ VM returns the following message when it deletes the rule set:

DELETED

STORE Subcommand

The STORE subcommand, under the DIAGLIM setting, stores previously compiled
diagnose limiting rule sets. CA ACF2 for z/ VM can reject this operation because of
insufficient authority for storing the diagnose limiting rule set.

70 Command and Diagnose Limiting Guide

TEST Subcommand

Syntax of the STORE Subcommand

Under the DIAGLIM setting, the STORE subcommand has the following syntax.

STore { FORCE }
{ NOFORCE }

FORCE
Stores a rule set, even if it currently exists.
NOFORCE

Stores a rule set only if it does not currently exist.

Note: You can also use the SET subcommand to set the default for FORCE|NOFORCE.

TEST Subcommand

The TEST subcommand lets you to interactively test a diagnose limiting rule set. Testing
ensures the diagnose limiting rule set provides the intended validation of attempts to
issue the diagnose instruction. When the TEST subcommand is active, CA ACF2 for z/ VM
only interprets diagnose limiting rules. Testing does not take into account any
site-specific system options or attributes of the logonids being tested.

Syntax of the TEST Subcommand

Listed below is the syntax of the TEST subcommand under the MODEL setting.

TEST {* }
{ DIAGnnnn }

Indicates you want to test the previously compiled diagnose limiting rule set.
(no parameter)

Operates the same as when you specify an asterisk.
DIAGnnnn

Identifies the key of the diagnose limiting rule set being tested. nnnn is the
four-character hexadecimal code for the diagnose instruction.

Chapter 4: Using the ACF Command (DIAGLIM Setting) 71

TEST Subcommand

TEST Subcommand Keywords

After you have issued the TEST subcommand, a period (.) indicates it is active. You can
enter any of the following keywords with appropriate values to a test access
environment. You must separate each keyword with blank characters. You can specify
one or more input lines.

UID(uidmask)

Identifies the user to be tested for execution of a diagnose instruction. To specify
this keyword, you do not need access to the tested user's logon ID record. If you
specify both the LID and UID keywords, CA ACF2 for z/ VM uses the last LID or UID
value specified. For example, if LID(TLCJJD) and UID(TLCNLT) are specified, CA ACF2
for z/ VM uses only UID(TLCNLT).

LID(lidmask)

Specifies the logon ID of the user to be tested for execution of a diagnose
instruction. Like UID, you can mask the value of LID. To specify this keyword, you do
not need access to the corresponding logon ID record. If you specify both LID and
UID, CA ACF2 for z/ VM uses the last LID or UID value specified (just like UID above).

DATE(date)

Specifies the date to be tested. This date must be in the format mm/dd/yy,
dd/mm/yy, or yy/mm/dd, as specified in the OPTS VMO record. The current date is
assumed as a default. For more information about the OPTS VMO record, see the
chapter “Defining Structured Infostorage Records” in the Administrator Guide.

TIME(hhmm)

Specifies the time when execution of a diagnose instruction is tested for. This time
is specified in hours and minutes (four digits).

SOURCE(sourceid)

Specifies the logical name of the input source or source group.

72 Command and Diagnose Limiting Guide

TEST Subcommand

Examples of TEST Subcommands

After you compile a diagnose limiting rule set, you can issue the TEST subcommand to
test the rule set.

DIAGLIM

compile
ACFpgm510I CA-ACF2 compiler entered

$key (diag0006)
uid(tlcopr) allow
uid(tlctec) log

ACFpgm551I Total record length=194 bytes - 4 percent utilized
DIAGLIM

test *
DIAG=DIAGO006, MDLTYPE=H50

The TEST subcommand is active, as indicated by the period (.). You can enter any of the
TEST subcommand keywords to specify the environment you want to test.

The UID keyword, for example, tests whether a diagnose limiting rule set allows a
certain user to issue a diagnose instruction. Here, we are testing the previously
compiled diagnose rule set for code X'0006' to see if user TLCNLT can issue the
diagnose.

DIAGLIM

test *
DIAG=DIAGO006, MDLTYPE=H50

UID(TLCNLT)

The following parameters are in effect:
Date=11/08/00, time=***** UID=TLCNLT, source=*i¥i**i*
Diagnose=DIAGOO06

The following would apply: LOG (relative rule entry 2)

Chapter 4: Using the ACF Command (DIAGLIM Setting) 73

TEST Subcommand

The system displays all of the current values of the environment being tested. At the
bottom of the display is a message that indicates if execution of the diagnose instruction
is allowed, logged, or prevented. From the previously compiled rule set, TLCNLT is
allowed to execute the diagnose code X'0006', but CA ACF2 for z/ VM writes an SMF
record to log the event.

After a result is displayed, you can make another entry of keywords to test another rule
set environment. But remember, after you enter TEST command keywords, the values
you specify remain in effect until you explicitly change them. Furthermore, as shown in
the previous example, almost all values you do not specify are assumed to be
completely masked, by default. The values for the DATE keyword and the DIAGNOSE
value are the only exceptions. If you specify no UID keyword, the TEST subcommand
tests all UIDs.

To terminate the TEST subcommand, enter END.

TEST Subcommand Results

The results of the TEST subcommand show if execution of the diagnose instruction is
allowed, logged, or prevented.

ALLOW

Access is allowed
LOG

Access is allowed but logged
PREVENT

Access is explicitly prevented.

If no rule entry specifically applies to the test access environment, CA ACF2 for z/ VM
displays the following message:

ACFpgm74CI No rule applies, access would be denied

74 Command and Diagnose Limiting Guide

Chapter 5: Command Limiting the CP
Spooling System

CP spooling facilities maintain input and output files for access by virtual machines
through unit record devices (printers, readers, punches, and consoles). Spooling gives
all users access to real unit devices that are under the control of the spooling system.
Below is a list of spool file commands that class D users can normally execute. Most
companies enforce strict access controls to data files. Often, they do not carry this level
of protection far enough (printed output that sits in the spool queue waiting to be
printed).

This chapter includes:
m Guidelines for using CA ACF2 for z/ VM to control spool-related commands
m Suggestions for protecting the spool files

m Examples of actual command limiting rules to control spool-related commands.

This section contains the following topics:

CP Commands That Affect Spooling (see page 75)
Using Command Limiting to Protect Spool Files (see page 78)
Using Command Limiting to Protect the Spool Queue (see page 82)

CP Commands That Affect Spooling

There are several commands that control and manipulate spooling operations. To
effectively protect your spool files, you should be aware of how each command affects
spooling and spool files. These commands are divided into three categories:

m Class D for the spooling operator

m (Class G for general users

m Commands that indirectly affect spooling.

Class D Spool File Commands

Below is a list of spool file commands that class D users can normally execute:
BAckspac

Restarts or repositions the current spool file.

Chapter 5: Command Limiting the CP Spooling System 75

CP Commands That Affect Spooling

CHange
Alters the attributes of a closed spool file.
DRain
Stops spooling activity on a device after the current file is finished.
FLush
Immediately stops the current spool file.
FRee
Removes the hold attribute from a user's spool files.
Hold

Puts the system hold attribute on the specified user's spool files that defers
processing of them.

LOADBUF
Loads a UCS or FCB on a real printer.
ORDer
Changes the order that closed spool files are to be processed.
PURge
Deletes a closed spool file from the spool queue.
Query
Displays the attributes of closed spool files on the spool queue.

REPeat

Changes the number of copies of the current file being processed, or changes it to
hold status.

SPAce

Forces single spacing on the printer.
SPTape

Dumps (backup) and loads (restores) closed spool files to tape.
STArt

Starts the processing of spool files on the indicated device.

TRANSsfer

Moves closed spool files from one user spool queue to another user spool queue.

76 Command and Diagnose Limiting Guide

CP Commands That Affect Spooling

Class G Spool File Commands

Below is a list of spool file commands that class G users can normally execute:
CHange

Alters the attributes of a closed spool file.
Close

Terminates spooling operations on the indicated virtual device that closes the file
so it appears (can be queried or altered) on the spool queue.

LOADVFCB
Specifies the forms control buffer image for a virtual spooled printer.
ORDer
Changes the order that closed spool files are to be processed.
PURge
Deletes a closed spool file from the spool queue.
Query
Displays the attributes of closed spool files on the spool queue.

SPool

Changes or sets spool options or attributes for the indicated device. Also directs
spool output to a user's spool queue.

TAG

Associates descriptive information with a spool file.

Commands That Indirectly Affect Spooling
Besides to the above commands, there is also a group of commands that have an impact
on spooling operations. They are:
DEFine
Establishes virtual unit record devices used for spooling operations.
LOGon

Processes the SPOOL statements in a user VM directory entry. These statements
define the virtual spooling devices available to a user and some of the attributes of
those devices. CA ACF2 for z/ VM command limiting does not process SPOOL
statements in a user's directory entry.

LOGoff

Automatically closes all open spool files.

Chapter 5: Command Limiting the CP Spooling System 77

Using Command Limiting to Protect Spool Files

Using Command Limiting to Protect Spool Files

When writing rules to protect your spool queue and files, you must consider all of the
spooling-related commands. Be aware that some commands, such as CHANGE, QUERY,
PURGE, SPTAPE, and TRANSFER, alter the attributes of a spool file. Rules for these
commands should ensure that a user cannot deliberately alter the attributes of a spool
file and then obtain access to it. When one of these commands is issued, CA ACF2 for z/
VM searches through the spool queue and matches all attributes of the spool file to the
operands specified in the CP command. This process ensures that the object of the
command (the affected spool file) is properly matched against the CA ACF2 for z/ VM
rule.

Class C and E users, or a person that has access to the computer system console, can use
the CP commands that display storage (DCP and DMCP) to determine the attributes of a
spool file or spooling device. These users could also use the STCP command to alter the
attributes of spool files. We recommend you use CA ACF2 for z/ VM command limiting
to control these powerful CP commands and employ physical security measures to
protect the computer system console.

Spool File Attributes That Can Be Used in a Rule

You can specify most of the information that CP maintains about a spool file as part of a
command limiting rule entry. You can explicitly or implicitly cite the following spool file
attributes in a rule entry:

Attribute Description

Spool queue name RDR (for reader), PRT (for printer), PUN (for punch), CON
(for console), or ALL (for all the different types of spool
files).

Spool file owner User ID, SYSTEM, or * (self) (defaults to * for class G users)

Spoolid Sequentially assigned four-digit numeric spool file number.

We recommend you do not use the spool ID to protect
spool files because it is a sequentially assigned number.

Spoolid2 For SPTape command only, end spool file number, or END.
Spool file class SuchasA,B,...Z,0,1,..9.
Output form name Can be any one- to eight-character name, such as

STANDARD, STD, and 2PART.

78 Command and Diagnose Limiting Guide

Using Command Limiting to Protect Spool Files

Choosing a Method of Spool File Protection
When deciding how to protect spool files, consider the output control procedures at
your site.
m Do you have multiple remote printers (DEST)?
m Do you use spool file classes as a printing control (CLASS)?
m Do you have special forms (FORM)?

How you process output and the type of information processed dictates how you use CA
ACF2 for z/ VM to protect your spool files.

There are six recommended methods to protect your spool queue:

Protect by Description

Class Minimally, a rule entry includes the owner ID of the spool
file, the class of spool files, the UID string of the users, and
the access permission.

Form Minimally, a rule entry includes the owner ID of the spool
file, the form number of the spool files, the UID, and the
access permission.

Class and form

Spool file owner Minimally, a rule entry includes the owner ID of the spool
file, the UID, and the access permission.

Class and target Minimally, a rule entry includes the owner ID of the spool
file, the class and target of the spool files, the UID, and the
access permission.

Destination

For example, user PAYOPER displays the spool queue through a QUERY command:

ORIGINID FILE CLASS ... FORM

MAINT 4324 A PRT STD
VSEIPO 4567 T CON 3HOLE
PAYROLL 4568 P PRT REGISTER
PAYROLL 4569 P PRT W2
PAYROLL 4790 P PRT STANDARD

They then issues a TRANSFER command to place all of the output class P spool files into
his spool queue:

TRAN PAYROLL PRT CLASS P TO *

Chapter 5: Command Limiting the CP Spooling System 79

Using Command Limiting to Protect Spool Files

CA ACF2 for z/ VM transposes this command to read TRANSFER PAYROLL PRT CLASS P
TO PAYOPER.

Before CA ACF2 for z/ VM transposes the rule set, the TRANSFER rule set states:

$KEY (TRANSFER)

*- PRT CLASS P - UID(PAYOPER) ALLOW
*- PRT CLASS A - UID(TLCOPER) ALLOW
*- PRT CLASS T - UID(TLCOPER) ALLOW

After transposition, CA ACF2 for z/ VM interprets the rule set as:

$KEY (TRANSFER)

*- PRT CLAS P TO PAYOPER UID(PAYOPER) ALLOW
*- PRT CLAS A TO PAYOPER UID(TLCOPER) ALLOW
*- PRT CLAS T TO PAYOPER UID(TLCOPER) ALLOW

Based on the transposition of the command and rule set, CA ACF2 for z/ VM selects the
following files as eligible for the TRANSFER command:

m PAYROLL 4568 P PRT REGISTER
m PAYROLL 4569 P PRT W2
m PAYROLL 4790 P PRT STANDARD

CA ACF2 for z/ VM examines the spool queue for each occurrence of a file that is owned
by PAYROLL with class P. Each file is then compared to all of the rule entries. All of the
files must be allowed by one or more rule entries in the rule set for the command to be
allowed to execute.

Mixing class and form in the same rule can lead to undesired results unless you explicitly
specify both operands in all rule entries related to spool files. For more information, see
Protection by Class and Form in this chapter.

CA ACF2 for z/ VM can encounter a spool file not found condition when there are no
spool files that match the command. You can control the action CA ACF2 for z/ VM takes
when a user issues a CP spool command for a spool file that does not exist. There are
three ways to control NOSPOOL processing: the ACFFDR, command model, and the
logon ID record.

For information about using the ACFFDR to control NOSPOOL processing, see the
chapter “The CA-ACF2 Field Definition Record” in the Installation Guide.

For information about the logon ID record, see the chapter “About the Logonid Record”
in the Administrator Guide.

80 Command and Diagnose Limiting Guide

Using Command Limiting to Protect Spool Files

Hierarchy of Options

[f this lewel has no setting

Check LIDREC attribute (blank or null),
check the next level.

If this level has no setting
(blank or null),

Check syntax model settin
Y d check the next level.

If this level has no setting
(blank or null),

Check WMO record value take the default action of
PREVEMT-MOLOG

Logonid Record Field

You can specify how you want CA ACF2 for z/ VM to react for each individual user
when the user enters a command for no spool files. This field is called NOSPOOL.
This is the highest level of override. When a user has the NOSPOOL field, a spool file
not found condition is handled as defined in the logon ID record (overrides both the
COMMAND clause and the ACFFDR setting). If this level is null (or blank), CA ACF2
for z/ VM passes processing to the next level.

Command Model Options

For each CP command, you can specify how you want CA ACF2 for z/ VM to handle
a spool file not found condition. You can do this using the NOSPOOL operand on the
COMMAND clause. This is the second level of override. The action specified in the
NOSPOOL operand on the COMMAND clause overrides the option specified in the
ACFFDR, but only for that specific command. If this level is null (or blank), CA ACF2
for z/ VM passes processing to the next level.

VMO Record

In the CMDLIM VMO record, there is an operand named NOSPOOL that defines how
CA ACF2 for z/ VM handles a spool file not found condition. You can override
NOSPOOL using the LIDREC attribute or the syntax model setting previously
described.

Chapter 5: Command Limiting the CP Spooling System 81

Using Command Limiting to Protect the Spool Queue

As previously stated, the command model controls NOSPOOL processing. There are
four options available to indicate what action to take when a spool file not found
condition occurs:

ALLOW

CA ACF2 for z/ VM passes the command to CP for normal syntax checking. CP
issues standard error messages to the user. CA ACF2 for z/ VM does not log the
syntax error to SMF. You can abbreviate ALLOW with A in model setting.

LOG

CA ACF2 for z/ VM passes the command to CP for normal syntax checking. CP
issues the standard error messages to the user. CA ACF2 for z/ VM also writes
an SMF record that appears on the Command Limiting Journal (ACFRPTCL). You
can abbreviate LOG with L in the model setting.

PREVENT

When a spool file not found condition occurs, CA ACF2 for z/ VM displays the
following message and rejects the command:

ACFpgm2771 No spool files found

CA ACF2 for z/ VM does not charge the user with a violation (CA ACF2 for z/ VM
does not increment the SEC-VIO count). PREVENT is the default for NOSPOOL
processing. CA ACF2 for z/ VM does not write System Management Facility
(SMF) records for spool file not found conditions (CA ACF2 for z/ VM does not
log the event). You can abbreviate PREVENT with P in the model setting.

PREVENT-LOG

Works the same as PREVENT above, except the condition generates an SMF
record that appears on the Command Limiting Journal (ACFRPTCL). This option
does not cause a violation. You cannot abbreviate in the model setting.

Using Command Limiting to Protect the Spool Queue

As previously explained, there are six ways to protect your spool queue, by class, form,
class and form, spool file owner class and target, and destination. We have included
sample rules here for each method to help you understand how you should write these
rules. These rules are shown in the decompiled format.

When practicing writing rules, you must use actual user IDs. If you do not use real user
IDs, test results can be incorrect. CA ACF2 for z/ VM checks the VM directory for user IDs
and issues the following messages if you use an undefined user ID, even though the rule
is correct:

ACFpgm751W No applicable rule could be found
ACFpgm757W Command syntax error (operand number <nn> is in error)

82 Command and Diagnose Limiting Guide

Using Command Limiting to Protect the Spool Queue

Protection by Class

In the example below, the first line of the rule indicates that the CHANGE command is
command limited. The second line prevents any user from changing a spool file in
classes C or 2. All other spool changes are allowed (last line of rule set).

$KEY (CHANGE)
- CLASS C2 - UID(*) PREVENT
- UID(*) ALLOW

In the next rule, user OPR can purge classes A, E, F, G, M, O, or R. User PAYOPR is
allowed to purge classes P and W that belong to user IDs beginning with P only. Other
users can only purge files in their own spool queue.

$KEY (PURGE)
pr**xxx - CL PW - UID(PAYOPR) ALLOW
- CL AEFGMOR - UID(OPR) ALLOW

ALL - UID(*) ALLOW
PRT - UID(*) ALLOW
PUN - UID(*) ALLOW
RDR - UID(*) ALLOW

The next rule set prevents users with the PAY, PER, GEN, MKT, and OPR user ID from
spooling the classes listed in their particular rule. The last five lines of the rule set allow
all other spooling for those classes not specifically prevented in the previous rules. The
mask *- requires you enter at least one character for the device type before you specify
other operands, including class. The - masks possible other operands, either before or
after class.

$KEY (SPOOL)
*- - CLASS BCEFGHIJKLMNQSTUVXYZ0123456789 - UID(PAY) PREVENT
*- - CLASS ABDGHIKLMNOQRSTVWXYZ0123456789 - UID(PER) PREVENT
*- - CLASS ABCDEFHIJKLMNOPRSTUVXYZ013456789 - UID(GEN) PREVENT
*- - CLASS BCDEGHIJKNOPQRTUVWXYZ0123456789 - UID(MKT) PREVENT
*- - CLASS ABCDEFGHIJKLMNQRSTVWXY012356789 - UID(OPR) PREVENT
- UID(PAY) ALLOW
- UID(PER) ALLOW
- UID(GEN) ALLOW
- UID(MKT)
- UID(OPR)

The next rule lets an OPR user ID dump any class A, B, or C file, but the occurrence is
logged. CA ACF2 for z/ VM denies all attempts at dumping any other classes.

$KEY (SPTAPE)
- CLASS ABC UID(OPR) LOG

Chapter 5: Command Limiting the CP Spooling System 83

Using Command Limiting to Protect the Spool Queue

Below, OPR user IDs can start up classes A, E, F, G, M, O, and R only. PAYOPR can only
start up classes P and W.

$KEY (START)
*- CL AEFGMOR - UID(OPR) ALLOW
*- CL PW - UID(PAYOPR) ALLOW

The following rule lets PAYOPR send files in classes A, P, R, and W to and from Payroll
and Personnel. The OPR user can send class E, F, G, M, and O files to anyone, and class A
and R files only to Payroll and Personnel. PAY and PER users can transfer files in classes
A, P, R, and W to or from others in Payroll and Personnel. PER users can also transfer
files in classes E, F, G, M, and O to or from anyone. GEN and MKT users can transfer files
to and from anyone.

$KEY (TRANSFER)

SYSTEM *- CL APRW *- Pp¥¥*** . UID(PAYOPR) ALLOW
SYSTEM *- CL AR *- P¥¥¥** - UID(OPR) A

*- CL APRW *- PER*** UID(PER) ALLOW

*- CL APRW *- PAY*** - UID(PAY) ALLOW

SYSTEM *- CL EFGMO - UID(OPR) ALLOW

*- CL EFGMO - UID(OPR) ALLOW

*- CL EFGMO - UID(PER) ALLOW

- UID(GEN) ALLOW

- UID(MKT) ALLOW

Protection by Form

There can be instances when spooling is best controlled by form. Following are
examples of how this could be accomplished. The second line of the rule set below
prevents any user from changing a spool file on any SYSTEM where the value of form is
STD (standard). Also, all users are prevented from changing a spool file on any device
with XY form. All other spool changes are allowed (last line of rule set). Remember, the
*- masks operands that you must specify (device type).

$KEY (CHANGE)

SYSTEM *- *. **xkkkxk*x _ FORM STD - PREVENT
ko ko skkksollkk o FORM XY - UID(*) PREVENT
- UID(*) ALLOW

84 Command and Diagnose Limiting Guide

Using Command Limiting to Protect the Spool Queue

In the rule below, user OPR cannot purge any files with form EXEC. PAYOPR can purge
any spool files with a form of A. Other users can only purge files in their own spool
queue.

$KEY (PURGE)
- FORM A - UID(PAYOPR) ALLOW
- FORM EXEC - UID(OPR) PREVENT
ALL - UID(*) ALLOW

PRT - UID(*) ALLOW
PUN - UID(*) ALLOW
RDR - UID(*) ALLOW

This rule set lets users with the PAY user ID spool any files with the EXEC form. PER
users can spool any files with the STD (standard) form.

$KEY (SPOOL)
- FORM EXEC - UID(PAY) ALLOW
- FORM STD - UID(PER) ALLOW

Next, a user with the OPR user ID can dump any spool with a form of ABC, but CA ACF2
for z/ VM logs the occurrence. CA ACF2 for z/ VM denies all attempts at dumping any
other form.

$KEY (SPTAPE)
*- *. *. FORM ABC - UID(OPR) L

According to the next rule, users with the OPR user ID can start up any spool files with
the STANDARD form only. All other users can start their own files, no matter what their
form.

$KEY (START)
*- FORM STANDARD - UID(OPR) ALLOW
ALL - UID(*) PREVENT

PRT - UID(*) ALLOW
PUN - UID(*) ALLOW
RDR - UID(*) ALLOW

The following rule lets PAYOPR transfer files in the form PAY to anyone in Payroll or
Personnel. PER and PAY users can transfer files, in the standard (STD) form, to anyone in
Payroll or Personnel. They cannot transfer any other form of files to anyone else. GEN
and MKT can transfer any files in any form.

$KEY (TRANSFER)

SYSTEM *- FORM PAY *- p¥**** . UID(PAYOPR) ALLOW
*- FORM STD *- P¥¥¥** UID(PER) ALLOW

*- FORM STD *- p¥¥¥** - UID(PAY) ALLOW

*- FORM * - UID(PAY) PREVENT

*- FORM * - UID(PER) PREVENT

- UID(GEN) ALLOW

- UID(MKT) ALLOW

Chapter 5: Command Limiting the CP Spooling System 85

Using Command Limiting to Protect the Spool Queue

Protection by Class and Form

If class or form by themselves do not provide the desired protection, you can combine
them. These rules can be more complicated because there can be a wide variety of
combinations of classes and forms.

The first entry of the rule set below prevents any user from changing a spool file in class
A or Bin any SYSTEM where the value of form is STD (standard). Also, all users are
prevented from changing a spool on any device in class C with a form of XY. This rule set
allows all other spool changes (last line of rule set).

$KEY (CHANGE)

*- CLASS AB CLASS * FORM STD - UID(*) PREVENT
*- CLASS C CLASS * FORM XY - UID(*) PREVENT

- UID(*) ALLOW

In the rule below, user OPR cannot purge any files in classes A or B, or with a form of
EXEC. User PAYOPR can purge any spool files with a class of P and form of A. Other users
can only purge files in their own spool queue, with any class.

$KEY (PURGE)

*- *- CLASS P FORM A - UID(PAYOPR) ALL
*- *- CLASS ABC FORM EXEC - UID(OPR) PR
ALL - UID(*) ALLOW

PRT - UID(*) ALLOW
PUN - UID(*) ALLOW
RDR - UID(*) ALLOW

The next rule set prevents users with the PAY user ID from spooling any files in class P
with the EXEC form. PER users cannot spool any files with the STD (standard) form and
class of X. The last two lines of the rule set allow all other spooling for those classes and
form not specifically prevented in the previous rules.

$KEY (SPOOL)
*- *- CLASS P FORM EXEC - UID(PAY) PRE
*- *- CLASS X FORM STD - UID(PER) PREVE
*- - UID(PAY) ALLOW
*- - UID(PER) ALLOW

86 Command and Diagnose Limiting Guide

Using Command Limiting to Protect the Spool Queue

This rule set lets users with the OPR user ID start up any spool files in classes A, B, C, or
D with the STANDARD form only. PAYOPR cannot start any spool files in class P, any
form. All other users can start their own files, no matter what their class or form.

$KEY (START)

*- CLASS ABCD FORM STANDARD - UID(OPR) ALLOW
*- CLASS P FORM * - UID(PAYOPR) PREVENT

ALL - UID(*) ALLOW

(
PRT - UID(*) ALLOW
PUN - UID(*) ALLOW
RDR - UID(*) ALLOW

Protection by Spool File Owner

You can protect spool files by spool file owner. This type of protection is useful when
you need to protect group or departmental files. The first rule entry lets any PAY user
change a spool that is owned by SYSTEM, but the event is logged. Also, no other users
can change PAYOPR files. OPR users can change any other files (last line of rule set).

$KEY (CHANGE)
SYSTEM *- - UID(PAY) LOG
PAYOPR *- - UID(*) PREVENT
- UID(OPR) ALLOW

In the next rule, PAYOPR can purge PAY files. OPR users can purge any SYSTEM files.
PEROPR can purge any files, but CA ACF2 for z/ VM logs the event. Other users can only
purge files in their own spool queue.

$KEY (PURGE)

PAY- *- - UID(PAYOPR) ALLOW
SYSTEM *- - UID(OPR) ALLOW
*- - UID(PEROPR) LOG

ALL - UID(*) ALLOW

PRT - UID(*) ALLOW
PUN - UID(*) ALLOW
RDR - UID(*) ALLOW

Chapter 5: Command Limiting the CP Spooling System 87

Using Command Limiting to Protect the Spool Queue

The rule set below lets OPR users spool TO and FOR any files. PAYOPR can spool TO and
FOR PAY users, but the event is logged. The last four lines of the rule set let users in a
department spool TO and FOR users in the same department (any user in the
Accounting department can spool TO or FOR any users in the Accounting department
users, Marketing department users can spool TO or FOR any other users in the
Marketing department).

$KEY (SPOOL)
PAY- - UID(PAYOPR) LOG
GEN- - UID(GEN) ALLOW
UID(MKT) ALLOW
EXC- - UID(EXC) ALLOW
- *- ACC- - UID(ACC) ALLOW
- UID(OPR) ALLOW

:

(
*
- X
*
*

This rule set lets OPR user IDs start up any files. PAY users can only start up PAY files,
but CA ACF2 for z/ VM logs the event. CA ACF2 for z/ VM denies all other users start up
privileges.

$KEY (START)
PAY - UID(PAY) LOG
SYSTEM - UID(*) PREVENT
*- - UID(OPR) ALLOW

The following rule set lets PAYOPR transfer any SYSTEM files to anyone. EXC users can
transfer EXC*** files to anyone. All PER*** users can transfer any PERxxx files only to
any other PER*** user. Users with the OPR*** user ID can transfer any files to anyone.

$KEY (TRANSFER)

SYSTEM *- *- *_ *_ *_

UID(PAYOPR) ALLOW
EXC- *- *- *. *. *. UID(EXC) ALLOW
PER- *- *- *. PER- *- UID(PER) ALLOW
- UID(OPR) ALLOW

88 Command and Diagnose Limiting Guide

Using Command Limiting to Protect the Spool Queue

Protection by Class and Target

Use protection by class and target when you must restrict files in certain classes to
distribution to various users. The rule set below prevents users with the PAY, PER, GEN,
MKT, and OPR user ID from spooling the classes listed in their particular rule. PAY users
can spool TO or FOR Payroll and Personnel, but again, only for the classes they are
allowed to spool as specified in the previous rule. PAY users can also spool files to
themselves. They cannot send files to anyone else. This rule set allows all other
spooling actions.

$KEY (SPOOL)
$NOSORT
*- - CLASS BCEFGHIJKLMNQSTUVXYZ0123456789 - UID(PAY) PREVENT
- CLASS ABDGHIKLMNOQRSTVWXYZ0123456789 - UID(PER) PREVENT
- CLASS ABCDEFHIJKLMNOPRSTUVXYZ01345689 - UID(GEN) PREVENT
- CLASS BCDEGHIJKNOPQRTUVWXYZ0123456789 - UID(MKT) PREVENT
CLASS ABCDEFGHIJKLMNQRSTVWXY012356789 - UID(OPR) PREVENT
TO pxx¥**x - UID(PAY) ALLOW
FOR P***** _ UID(PAY) ALLOW
TO OWNER - UID(PAY) ALLOW
FOR OWNER - UID(PAY) ALLOW
- TO *- - UID(PAY) PREVENT
- FOR *- - UID(PAY) PREVENT
UID(PAY) ALLOW
UID(PER) ALLOW
UID(GEN) ALLOW

(

(

! ! * K K X X X X X X X
' ' ' ' ' ' ' ' ' '
' ' ' ' '

)
)
- UID(MKT)
- UID(OPR)
This rule only lets PAYOPR transfer files in classes A, P, R, and W to Payroll. The OPR user
can transfer files in classes A and R TO or FOR anyone in Payroll or Personnel. PAY and
PER users can transfer files in classes A, P, R, and W to others in Payroll and Personnel.
OPR users can also send their files on classes E, F, G, M, and O to anyone. GEN and MKT
users can send their files to anyone.

$KEY (TRANSFER)

SYSTEM *- CL APRW TO PAY*** - UID(PAYOPR) ALLOW
SYSTEM *- CL AR *- p¥kx¥x - UID(OPR) A

*- CL APRW *- p¥#*xx - UID(PER) ALLOW

*- CL APRW *- px#*xx . UID(PAY) ALLOW

SYSTEM *- CL EFGMO - UID(OPR) ALLOW

*- CL EFGMO - UID(OPR) ALLOW

*- CL EFGMO - UID(PER) ALLOW

- UID(GEN) ALLOW

- UID(MKT) ALLOW

Chapter 5: Command Limiting the CP Spooling System 89

Using Command Limiting to Protect the Spool Queue

Protection by Destination

Use protection by destination when you want to restrict files to certain printer or punch
destinations. The rule set below allows user IDs beginning with SEC to spool files with a
DEST of TOPSEC only. All other users can specify any destination other than TOPSEC.

$KEY (SPOOL)

*- DEST TOPSEC - UID(SEC) ALLOW
*- DEST *- - UID(SEC) PREVENT
- DEST TOPSEC - UID() PREVENT
*- DEST *- - UID(*) PREVENT

90 Command and Diagnose Limiting Guide

Chapter 6: Command Limiting for
Shared File System

Native Shared File System (SFS) administration provides for one or more administrators
who have unrestricted access to everything in a filepool. This forces you to create
separate filepools whenever you want to grant an SFS administrator authority over a
subset of users. While you may want multiple filepools for performance reasons, they
may not be the answer to providing greater ease of administrative authority. Even
creating multiple filepools does not always solve the problem of splitting authority in a
detailed and flexible manner.

CA ACF2 for z/ VM provides the option of validating SFS-related commands SFS
administrators issue through the CA ACF2 for z/ VM command limiting feature. The
command rule key is always SFS_ followed by up to eight bytes of command name. For
example, the SFS QUERY command rule key is SFS_QUERY. You must include the rule
key of any SFS command to be validated explicitly or implicitly in the COMMANDS
keyword of the CMDLIM VMO record.

The SFS command syntax to be validated is not free form like CP commands. Instead,
SFS reconstructs each command in a fixed format before passing it to CA ACF2 for z/
VM. CA ACF2 for z/ VM uses this reconstructed syntax to create command limiting
models.

This section contains the following topics:

Command Syntax (see page 91)

Command Syntax

Listed below are the command syntaxes available for SFS. You should carefully review
these commands to see whether any are appropriate for command limiting at your site.
For the values of the variables for these syntaxes, see Variables in this chapter.

SFS_CONNECT fpid [USER userid]
SFS_DATASPAC fpid { ASSIGN } dirid
{ RELEASE}
{ LOCK fn ft dirid (FROM userid }
SFS DELETE fpid { PUBLIC }
{ USER userid }

Chapter 6: Command Limiting for Shared File System 91

Command Syntax

SFS_DIRATTR fpid dirid

SFS_DMSDISFS fpid userid

SFS DMSDISSG fpid nnnnn

SFS_DMSENAFS fpid userid

SFS DMSENASG fpid nnnnn

SFS_DMSOPCAT fpid

SFS_DMSQUSG fpid nnnnn
SFS _DMSRELBK fpid nnnnn
SFS _DMSWRACC fpid

SFS_ENROLL fpid

SFS_FILEPOOL fpid

SFS MODIFY fpid USER

SFS_QUERY fpid

SFS_RELOCATE fpid

SFS_RENAME fpid diridl dirid2

{FILECONTROL }
{DIRCONTROL ([FORCE|NOFORCE] }

{SHARE }
{EXCLUSIVE }

{SHARE } { DETACH }
{EXCLUSIVE } { NODETACH }

{DIRECTORY } { dirid © {READ|FILEATTR} }
{FILESPACE } { userid © {READ|WRITE|FILEATTR} }
{ } {READ }
{GROUP nnnnn} {WRITE }

{FILEATTR }

{ PUBLIC }
{ USER userid (BLOCKS nnnnnnnn STORGROUP nnnnn }

{ MINIDISK }
{ CONTROL BACKUP [DISK fn ft dirid] }
{ [TAPE vdev 1}

{+nnnnnnnnnn} FOR userid
{-nnnnnnnnnn}

{ACCESSORS [dirid|(DATASPACE] }

{DATASPACE [dirid] }
{FILEPOOL {CONFLICT userid }}
{ {{STATUS | (CATALOG\}}}
{LIMITS {ALL|FOR userid} }
{diridl TO dirid2 }

{fn ft diridl TO dirid2 }

SFS SMSCDRA fpid fn ft dirid <dral> <dra2> <dra3>

SFS SMSERASE fpid fn ft dirid ACFONLY

92 Command and Diagnose Limiting Guide

Command Syntax

{WRITE }
SFS_SMSOPEN fpid fn ft dirid {NEW } ACF
{REPLACE}

SFS SMSOPENX fpid fn ft dirid {MIGRATE}
{RECALL }

Variables

The variables in the above syntax are:
fpid
Filepool ID
dirid
Directory ID
fn
CMS file name

CMS file type
userid

User ID. Also shown as userid1 to userid15. The ESM is called multiple times when
the command references more than 15 user IDs.

dral-3

Internal operands DF/SMS uses
nnnnn

Five-digit number
nnnnnnnnnn

Ten-digit number

Chapter 6: Command Limiting for Shared File System 93

Chapter 7: Controlling Syntax Error
Processing for Command Limiting

CA ACF2 for z/ VM command limiting checks each CP command to ensure that the
command syntax is correct. By default, CA ACF2 for z/ VM takes the following actions
when it detects a syntax error:

Displays a message stating that it detected a syntax error.

Rejects the command. It never reaches the IBM CP command processor. This avoids
the overhead of rule validation for a syntax error and passing the command to CP,
that would reject it.

Does not write a logging or violation record regarding the syntax error.

Does not update the user's violation count (SEC-VIO). This is important because
most syntax errors are the result of honest typographical errors. Updating the
user's violation count might cause a suspension of the user's logonid.

Remember, CA ACF2 for z/ VM only performs syntax checking for commands it
validated. Specify these commands in the CMDLIM VMO record.

This section contains the following topics:

Overriding the Defaults (see page 95)

Syntax Error Options (see page 96)

Logonids That Should Have the SYNERR Logonid Field (see page 97)

Overriding the Defaults

CA ACF2 for z/ VM gives you three ways to handle a syntax error condition, described in
hierarchical order:

Logonid record field

You can specify how you want CA ACF2 for z/ VM to react for each individual user
when that user enters a syntactically incorrect command. This field is called
SYNERR.

This is the highest level of override. When a user has the SYNERR field turned on, CA
ACF2 for z/ VM processes the syntax error as defined in the logonid record,
regardless of any other syntax error options (overrides both the COMMAND clause
and the ACFFDR setting). If this level is null (or blank), CA ACF2 for z/ VM passes
processing to the next level, command model options.

Chapter 7: Controlling Syntax Error Processing for Command Limiting 95

Syntax Error Options

Command model options

For each CP command, you can use the SYNERR operand on the COMMAND clause
to specify how you want CA ACF2 for z/ VM to react when it detects a syntax error.

This is the second level of override. The action specified in the SYNERR operand on
the COMMAND clause overrides the option specified in the ACFFDR, but only for
that specific command. If this level is null (or blank), CA ACF2 for z/ VM passes
processing to the next level, VMO records.

VMO records

There is a field named SYNERR in the CMDLIM VMO record that sets the global
syntax error option for the system. You can use one of the above options to
override SYNERR.

If all of these options are null, CA ACF2 for z/ VM assumes PREVENT (no log).

Syntax Error Options

As mentioned above, there are three ways to control syntax error processing: VMO
records, command models, and logonid records. The options available for all three are
basically the same. That is, they all accept an ALLOW, LOG, PREVENT, or PREVENT-LOG
keyword or a null (blank):

ALLOW

When you set this option, CA ACF2 for z/ VM passes the command to CP for normal
syntax checking. CP issues standard error messages to the user. CA ACF2 for z/ VM
does not log the syntax error to SMF.

LOG

When you set this option, CA ACF2 for z/ VM passes the command to CP for normal
syntax checking. CP issues standard error messages to the user. CA ACF2 for z/ VM
also writes an SMF record that appears on the Command Limiting Journal
(ACFRPTCL).

PREVENT

When CA ACF2 for z/ VM detects a syntax error, it sends the following message to
the user and rejects the command:

ACFpgm274E CA-ACF2 syntax error, operand number <operand>
- command <cmd> rejected

Also, CA ACF2 for z/ VM does not charge the user with a violation (CA ACF2 for z/
VM does not increment the SEC-VIO count because of the syntax error).

SYNERR=PREVENT is the default for CMDLIM VMO record and the CA ACF2 for z/
VM-supplied command models. CA ACF2 for z/ VM does not write a System
Management Facility (SMF) record for syntax errors.

96 Command and Diagnose Limiting Guide

Logonids That Should Have the SYNERR Logonid Field

PREVENT-LOG

When you set this option, CA ACF2 for z/ VM prevents the execution of the
command and logs the fact that the user entered the command incorrectly. This
option does not cause a violation.

In the logonid record and command model, SYNERR() is the default setting. You can
change this setting to SYNERR(LOG) or SYNERR(PREVENT-LOG) if you need SMF
records for an individual user. These SMF records appear in the Command Limiting
Journal (ACFRPTCL).

null

If you set the value of SYNERR= to null (blank), CA ACF2 for z/ VM passes error
processing to the VMO record for checking.

Logonids That Should Have the SYNERR Logonid

Field

We recommend you assign SYNERR(LOG) or SYNERR(ALLOW) to the directory
maintenance virtual machine (usually DirMaint) and the remote spooling
communications subsystem (usually RSCS). These virtual machines rely on the standard
CP syntax error return codes during their normal processing.

To include the SYNERR field in a user logonid record, use the CHANGE lid
SYNERR(option) command, where option is ALLOW, LOG, PREVENT, or PREVENT-LOG. To
remove the field from a user's logonid record, specify SYNERR() .

If you do not change the value for SYNERR from the default of null (or blank), CA ACF2
for z/ VM passes error processing to the next hierarchical level for checking. The first
level of checking is the logonid record attribute. If the SYNERR value is null, the next
level of checking is the syntax model. If you did not specify a value for the SYNERR
syntax model, CA ACF2 for z/ VM checks the VMO record. If CA ACF2 for z/ VM does not
find a value for SYNERR there, it takes the default action of PREVENT (no logging).

Chapter 7: Controlling Syntax Error Processing for Command Limiting 97

Chapter 8: VM Directory Command
Limiting and Logging Support

The VM directory contains information for all authorized users on your system. These
entries contain the user ID (user's identification), the password, virtual storage size,
spool addresses, and the minidisk locations and sizes for each user. CA provides a
directory maintenance program, CA-Director. IBM also provides a directory
maintenance program, DirMaint. Both programs control access to the VM directory by
restricting the additions of new minidisks, changing the size of an existing minidisk,
deleting minidisks, and transferring ownership of minidisks.

CA ACF2 for z/ VM provides an optional interface to the DirMaint program product that
controls:

m The execution of all DIRM commands by all users. All of these command executions
are logged in the DirMaint Event Log (ACFRPTDL). For DirMaint logging records for
the MDISK and MDPW functions, the user-specified password in the SMF records is
Xed out unless you specified the ALL parameter for ACFRPTDL.

m Al minidisk overlaps, to help guard against accidental disclosure, modification, or
destruction of data on minidisks.

m The DirMaint command and its operands, so you can decentralize directory

maintenance between multiple DirMaint privileged users.

DirMaint command limiting violations do not increment a user's violation count. CA
ACF2 for z/ VM only increments this count for access violations. If access violations
cause the user to reach the MAXVIO threshold, CA ACF2 for z/ VM forces him off.

This section contains the following topics:

Important Installation Information (see page 99)
Protecting the VM Directory in DirMaint (see page 100)

Important Installation Information

CA ACF2 for z/ VM supports DirMaint Version 1 Release 5 and Function Level 410 and
above.

Support of the DirMaint command is optional. You must install it before validation
occurs. If you decide to use DirMaint command limiting, you must turn the AUDIT bit of
the DirMaint service machine logon ID record on immediately. If you do not turn AUDIT
on, the DirMaint service machine issues error messages (prefixed by DirMaint) to the
owner and operator, then logs itself off. For installation instructions, see the chapter
“Installation Options” in the Installation Guide.

Chapter 8: VM Directory Command Limiting and Logging Support 99

Protecting the VM Directory in DirMaint

Protecting the VM Directory in DirMaint

This section will help you control the VM directory using DirMaint. You should have the
IBM DirMaint Command Reference that describes all the DirMaint commands handy for
reference when writing rules.

Rule Writing Guidelines for the DirMaint command

This section introduces the structure of the DirMaint command limiting rule sets. It also
explains the scenario used in the sample rules in subsequent sections. CA ACF2 for z/
VM provides one SKEY (DirMaint) for all the DirMaint subcommands. CA ACF2 for z/ VM
automatically logs the execution of any DirMaint command. CA ACF2 for z/ VM does not
support the commands listed in this chapter for all DirMaint releases.

Compiling DirMaint Models

Before you can write command limiting DirMaint rules, you must compile the models.
To compile a syntax model for DirMaint commands, issue the following commands:

acf

ACF

set model

MODEL

compile DIRMxxxx

where xxxx identifies your DirMaint release. Use DIRMR510 for Function Level 510 and
DIRML530 for Function Level 530.

Rule sets with a key of DirMaint can prevent users from executing certain DirMaint
commands on a DirMaint system:

$KEY (DirMaint) MDLTYPE(530)

You can now write rules to restrict or allow DirMaint commands without having to
define individual users.

Writing Initial Rules

As a very simple start, you could write the rules in this section when you install the CA
ACF2 for z/ VM DirMaint logging feature. This rule set allows users do everything they
normally do.

$KEY (DirMaint) MDLTYPE(530)
FORUSER * - UID(*) ALLOW

The keyword DirMaint in the above rule lets all users execute all DirMaint commands.

100 Command and Diagnose Limiting Guide

Protecting the VM Directory in DirMaint

DirMaint Version 1 Release 5 and Above Command Syntax

DirMaint Version 1 Release 5 and above command structure follows:

DirMaint prefix-keywords command-string
prefix-keywords

Any of the several DirMaint options, such as FORUSER, ASUSER, and so on.
command-string

The actual DirMaint command string.
Most of the prefix-keywords affect how the command operates. However, the FORUSER
keyword specifies who the command is issued for, which in many cases means what
directory entry the command should actually affect. Because of this, the CA ACF2 for z/

VM VM DirMaint Version 1 Release 5 interface constructs a command validation string
as follows:

DirMaint FORUSER userid cmd-string
DirMaint

The command name and, therefore, the name of the rule (SKEY value) that is
validated.

FORUSER
A constant value of FORUSER.
userid

The value that follows the FORUSER keyword. This value is normally * if the
command issuer did not supply the FORUSER prefix-keyword, but the DirMaint
default settings or the ASUSER prefix-keyword can override it.

cmd-string

The actual function to perform. This does not include the prefix-keywords.

Even if DirMaint Version 1 Release 5 is running with CMDLEVEL= 140A, CA ACF2 for z/
VM validates the Version 1 Release 5 syntax because DirMaint converts the 140A
compatibility syntax to Version 1 Release 5 syntax before calling the command
validation exits.

For example, to allow MAINT to issue the command:

DirMaint FORUSER TESTUSER PURGE

The following rule entry applies:

$KEY (DirMaint)
FORUSER TESTUSER PURGE UID(MAINT) ALLOW

Chapter 8: VM Directory Command Limiting and Logging Support 101

Protecting the VM Directory in DirMaint

This allows MAINT to PURGE the directory entry for ID TESTUSER. The following rule also
applies:

$KEY (DirMaint)
FORUSER * PURGE UID(MAINT) ALLOW

If you use the value of * in the rule for the FORUSER operand, any FORUSER value
applies. In other words, the above rule allows MAINT to PURGE the directory entry for
any user.

To allow a rule to only apply to the command issuer, such as when a command is issued
without the FORUSER operand or a FORUSER value that matches the command issuer,
then write the rule as:

$KEY (DirMaint)
FORUSER OWNER MDPW *- UID(*) ALLOW

The above rule allows any user to issue the MDPW command for its own minidisks, but
not for another user's minidisks. OWNER is a special token that matches either * or the
ID being validated.

Commands with Special Rule Considerations

All DirMaint commands are validated as discussed previously, but there are some
special considerations and multiple validations for some commands.

ADD

The ADD command is validated. Then CA ACF2 for z/ VM validates each MDISK you
are adding with the user you are adding as an AMDISK command.

CMDISK

The CMDISK command is first validated as is and, if the command is allowed, then
CA ACF2 for z/ VM validates a second time to verify the authority to delete the old
extent. This second validation is a DMDISK validation using the VOLSER that the old
minidisk is deleted from when the change is complete.

DMDISK

The DMDISK command is validated with one additional parameter. The VOLSER that
the minidisk is on is added to the command. The VOLSER is inserted immediately
after the virtual address of the minidisk you are deleting.

To allow ACC001 to delete any minidisk from the real DASD with VOLSER ACCPAK,
the rule is:

FORUSER * DMDISK *- ACCPAK - UID(ACCOO1) ALLOW

102 Command and Diagnose Limiting Guide

Protecting the VM Directory in DirMaint

PURGE

The PURGE command is validated. Then CA ACF2 for z/ VM validates each MDISK
you are deleting with the user you are purging as a DMDISK command.

REPLACE

The REPLACE command is validated. Then CA ACF2 for z/ VM validates each MDISK
that you are changing with both a DMDISK and AMDISK command. Any new
minidisks are validated as an AMDISK command. Then, CA ACF2 for z/ VM validates
any minidisk that will no longer exist in the replaced directory as a DMDISK
command.

RMDISK

The RMDISK command is validated. Then CA ACF2 for z/ VM validates a DMDISK
command for the old minidisk.

For each of these commands, all of the validations must be allowed for each command
for DirMaint to actually process it.

Adding Minidisks (AMDISK)

The sample rule set shown below implements the following controls:

In the first rule entry, we allowed only ACCMGR to add minidisks to the directory on
a group of volumes belonging to the group defined as ACC that are charged to the
Accounting Department

The second rule entry allows PAYMGR to add minidisks to the directory on a group
of volumes belonging to the group defined as PAY that are charged to the Payroll
Department.

The third rule entry states the account manager can also add minidisks to any
volume that begins with ACC00.

The fourth rule entry states the payroll manager can add minidisks to any volume
that begins with PAYO0O as defined in the.

The last rule entry lets SYSADM add minidisks to any volume serial.

$KEY (DirMaint)
$MODE (ABORT)
FORUSER * AMDISK *- XXXX AUTOG *- ACC - UID(ACCMGR) ALLOW

FORUSER * AMDISK *- XXXX AUTOG *- PAY - UID(PAYMGR) ALLOW
FORUSER * AMDISK *- *- *. *. ACCOO* - UID(ACCMGR) ALLOW
FORUSER * AMDISK *- *- *. *. PAYQOQ* - UID(PAYMGR) ALLOW
FORUSER * AMDISK - UID(SYSADM) ALLOW

The field XXXX is a place holder. When using a group value (AUTOG), do not define a
volume serial. XXXX tells the system that we did not assign a volume serial. You cannot
use fields other than XXXX as a placeholder because of the DirMaint command format.

Chapter 8: VM Directory Command Limiting and Logging Support 103

Protecting the VM Directory in DirMaint

Changing Minidisks (CMDISK)
The sample rule set below illustrates how to control who can make changes to various
minidisks.

m The first rule entry limits ACCMGR to changing only minidisks that reside on the ACC
group of volumes.

m The second entry limits PAYMGR to changing only minidisks that reside on the PAY
group of volumes.

m The third rule entry limits ACCMGR to changing minidisks to reside on any volume
that starts with ACCOO.

m The fourth rule entry limits PAYMGR to changing PAYOO minidisks to reside on any
volume that starts with PAY0O.

m The fifth entry lets SYSADM make changes using automatic allocation on any group

of volumes.

$KEY (DirMaint)

FORUSER * CMDISK *- DUMMY AUTOG *- ACC UID(ACCMGR) ALLOW
FORUSER * CMDISK *- XXXX AUTOG *- PAY UID(PAYMGR) ALLOW
FORUSER * CMDISK *- *- *. *. ACCOO* UID(ACCMGR) ALLOW
FORUSER * CMDISK *- *- *. *. PAYQO* UID(PAYMGR) ALLOW
FORUSER * CMDISK *- XXXX AUTOG *- - UID(SYSADM) ALLOW

The field XXXX is a place holder. When using a group value (AUTOG), do not define a
volume serial. XXXX tells the system that we did not assign a volume serial. You cannot
use fields other than XXXX as a placeholder because of the DirMaint command format.

Converting DirMaint Version 1 Release 4 Rules to Version 1 Release 5
and Above

For most cases, you should take your DirMaint Version 1 Release 4 rule and add the
FORUSER keyword and value to the front of each rule entry. Then, if the rule is for one
of the commands where “user to change” was a command operand, remove that
operand from the rule. The FORUSER operand value replaces the “user to change”
operand in the new DirMaint command syntax. ADD is an exception, since the user you
are adding is still the first operand of ADD.

104 Command and Diagnose Limiting Guide

Protecting the VM Directory in DirMaint

For example, to convert the following DirMaint Version 1 Release 4 rule:

$KEY (DIRMPRIV)

ADD ACC*** UID(ACCMGR) ALLOW

AMDISK *- *- DUMMY AUTOG *- ACC - UID(ACCMGR) ALLOW
AMDISK *- *- *- AUTOV *- ACCOO* - UID(ACCMGR) ALLOW
CHVADDR ACC- *- TO - UID(ACCMGR) ALLOW

CMDISK *- *- DUMMY AUTOG *- ACC UID(ACCMGR) ALLOW
CMDISK *- *- *- AUTOV *- ACCOO* - UID(ACCMGR) ALLOW
DMDISK *- *- ACCOO0* - UID(ACCMGR) ALLOW

LOCK ACC*** UID(ACCMGR) ALLOW

TMDISK ACC- 019*- TO ACC- 019* UID(ACCMGR) ALLOW
UNLOCK ACC*** UID(ACCMGR) ALLOW

Change the rule to:

$KEY (DirMaint)

FORUSER * ADD ACC*** UID(ACCMGR) ALLOW

FORUSER * AMDISK *- XXXX AUTOG *- ACC - UID(ACCMGR) ALLOW
FORUSER * AMDISK *- *- AUTOV *- ACCOO* - UID(ACCMGR) ALLOW
FORUSER ACC- CHVADDR *- TO - UID(ACCMGR) ALLOW

FORUSER * CMDISK *- XXXX AUTOG *- ACC UID(ACCMGR) ALLOW
FORUSER * CMDISK *- *- AUTOV *- ACCOO* - UID(ACCMGR) ALLOW
FORUSER * DMDISK *- ACCOO* - UID(ACCMGR) ALLOW

FORUSER ACC*** LOCK UID(ACCMGR) ALLOW

FORUSER ACC- TMDISK 019*- TO ACC- 019* UID(ACCMGR) ALLOW
FORUSER ACC*** UNLOCK UID(ACCMGR) ALLOW

Notice that the SKEY has changed to DirMaint and XXXX is now used for the generic
device type when you are allocating a minidisk with AUTOV or AUTOG instead of the
DUMMY that was used in DirMaint Version 1 Release 4. For all of the commands except
for ADD, the userid operand now follows FORUSER.

Chapter 8: VM Directory Command Limiting and Logging Support 105

Chapter 9: Syntax Model Command
Language

Syntax Model Command Language (SMCL) is a facility that describes the valid command
syntax for a CP command.

Before you can use the CA ACF2 for z/ VM command limiting feature, you must define
one command model for each CP command that CA ACF2 for z/ VM will validate. Each
model identifies a CP command to CA ACF2 for z/ VM, the various formats allowed for a
command, and the attributes of every operand used in a particular command format.
CA ACF2 for z/ VM uses a model during command limiting validation to determine the
format of the command and to match the command to the appropriate command
limiting rule.

Command models are supplied with the base CA ACF2 for z/ VM product for all standard
CP commands. You do not have to alter the supplied command model unless you alter
the format of a command. For example, if you add an operand to a standard CP
command, you must modify the supplied model for that command to include the new
operand.

A separate set of command models are supplied for each VM product level. These
product levels and their file names are listed in the chapter “System Requirements” in
the Installation Guide. CA ACF2 for z/ VM supports all levels of VM that IBM currently
supports.

This section contains the following topics:

Compiling Command Syntax Models (see page 107)
Components of a Model (see page 109)
Characteristics of a Command Model (see page 110)
Elements of a Command Model (see page 113)

Compiling Command Syntax Models

To compile a syntax model, issue the following commands:

acf

ACF

set model
MODEL
decompile fn

Chapter 9: Syntax Model Command Language 107

Compiling Command Syntax Models

fn

The file name of the sample model file in the previous list.

Note: The default MDLTYPE from the CMDLIM VMO record is used unless the MDLTYPE
is specified on each model in the file being compiled or the MDLTYPE parameter is
included on the COMPILE command.

For more information on compiling command syntax models, see the Installation Guide.

Below is a sample compile of the syntax model.

* ACFMOUNT COMMAND
COMMAND ACFMOUNT
FORMAT
OPERAND VOLSER, 6, TRAN=ANY
OPERAND GROUP=0PTIONS
FORMAT END
OPTIONS GROUP TYPE=OPTIONAL
OPERAND VCUU, 4, TRAN=VCUU
ADDRESS OF VIRTUAL TAPE DRIVE
OPERAND LIST=((WRITE), -
(READ, TYPE=DEFAULT))
GROUP END
COMMAND END

COMMAND WARNING
FORMAT CLASS=AB
OPERAND LIST=(-
ALL,3), -
*,1, TRAN=SELF), -
OPERATOR, 2) -
USERID, 8, TRAN=USER) -

—_~ e~~~

)
OPERAND MSGTEXT, 231, TRAN=REST, OPTIONAL
FORMAT END
COMMAND END

For the sake of brevity, the above syntax model only shows the first and last CP
commands in this model. For information about the names of the syntax model files, see
the Installation Guide.

Many VM sites often develop complete CP commands locally. If this is the case at your
site, be sure to define a command model for each locally-developed CP command. This
lets CA ACF2 for z/ VM validate execution of the command using the standard command
limiting feature.

108 Command and Diagnose Limiting Guide

Components of a Model

Components of a Model

Each command model describes a valid CP command, its formats, and its operands.
Command models are created through the syntax model command language facility.
You use the following set of clauses to define a syntax model.

COMMAND clause

Identifies a command by name. It signals the start of a command model definition
and signals the end of a command model.

FORMAT clause

Identifies the VM privilege class required to use a particular format of a command.
You can specify multiple FORMAT clauses for a single command to accommodate
CP commands that have multiple formats.

NEXTMDL clause

Describes how you can break large command limiting models into smaller, more
manageable syntax models.

OPERAND clause
Describes an individual command operand and its attributes.
GROUP clause

Describes groups of command operands that relate or depend on each other.
Typically, a GROUP clause describes keyword operands, required operands, optional
operands, and mutually exclusive operand groups.

COMMENT clause
Places comments in the command model.
NULL clause

Places blank (or null) lines in the command model to make reading a command
model easier.

Chapter 9: Syntax Model Command Language 109

Characteristics of a Command Model

Characteristics of a Command Model

Take a look at some of the CP commands that are documented in the IBM CP Command
Reference. Notice that:

m Most CP commands can have multiple formats

m Different privilege classes of users have different operands available to them
m Optional operands can appear in any order or in a specified order

m Some commands have default operands

m Operands can be mutually exclusive

m Operands are sometimes preceded by a keyword descriptor

m Operands are sometimes repeated.

To illustrate some of these characteristics, review the standard syntax for the IPL
command in the next figure.

Ipl {vaddr [cylno] {CLear } }
{ [nnnnnn] {NOCLear} [STOP] [ATTNI}[PARM pl [p2..[p3211]
systemname

While reviewing the IPL command syntax, notice:
m There are two command formats. You can IPL a vaddr or a systemname.

m When you IPL a vaddr, you can also specify one or more optional operands. There
are two groups of optional operands. The first group includes cylno, nnnnnnnn,
CLear, NOCLear, STOP, and ATTN. Both groups include (PARM p1 [p2..p32].

m Some operands have default values. For example, if you IPL a vaddr, then NOCLear
is the default.

m Some operands are mutually exclusive, meaning you can only use one of them. For
example, CLear and NOCLear are mutually exclusive.

m Notice how the PARM operand relates to p1. PARM is a keyword descriptor for p1,
so that CA ACF2 for z/ VM does not confuse it with any other operand. When you
specify PARM, you must also include at least one parameter (p1) following the
keyword PARM. The parameters p2 through p32 are optional. In command model
terminology, these parameters can occur 31 times.

m Some operands have constant values. We show them in caps. They include CLear,
NOCLear, STOP, ATTN, and PARM.

m Operands that are constants do not have transposition routines. Other operands
are variables. We show these in lower case. They include vaddr, systemname, cylno,
nnnnnn, and pl...p32. Operands that are variables are always associated with a
transposition routine.

110 Command and Diagnose Limiting Guide

Characteristics of a Command Model

The syntax model command language provides a relatively straightforward method for
modelling a command. An example of how the IPL command is modelled follows:

Notes: SMCL CLAUSES:

1. COMMAND IPL
*
2. FORMAT CLASS=G
3. OPERAND vcuu, 4, TRAN=VCUU
4. OPERAND GROUP=0PTIONS
5. OPERAND GROUP=PLIST
FORMAT END
6. FORMAT CLASS=G
7. OPERAND systemname, 8, TRAN=ANY
5. OPERAND GROUP=PLIST
FORMAT END
4, OPTIONS GROUP TYPE=OPTIONAL

OPERAND LIST=((cylno,3,TRAN=HEX), -
(nnnnnn, 6, TRAN=DECIMAL))
OPERAND LIST=((CLEAR,2), -
(NOCLEAR, 4, TYPE=DEFAULT))
OPERAND STOP,4
OPERAND ATTN, 4
GROUP END

5. PLIST GROUP TYPE=KEYWORD
OPERAND PARM, 4
OPERAND P1,8, TRAN=ANY
OPERAND P2,8, TRAN=ANY, 0CCURS=31, OPTIONAL
GROUP END
8. COMMAND END

Most of the supplied models shown in this guide apply to VM/HPO Release 4.2 systems.

Chapter 9: Syntax Model Command Language 111

Characteristics of a Command Model

Notes on SMCL Clauses

1.

This is the SMCL for the IPL command. It signifies the beginning of the IPL
command.

This is the first format of the IPL command. All the operands for this command
format are described in the boundaries of the FORMAT clause (you must describe
all operands before the FORMAT END clause). There is also a second format allowed
for IPL, but it is described in its own FORMAT clause (see Notes 6 and 7).

The first operand in the first format is vcuu that has a maximum length of four
characters. Because there is no way to know what value vcuu is when you enter the
command, CA ACF2 for z/ VM uses a transposition routine (TRAN=VCUU) when you
enter the IPL command. This verifies that the value entered is a valid hexadecimal
value.

The group called OPTIONS describes several optional operands.

OPTIONS GROUP TYPE=OPTIONAL

OPERAND LIST=((cylno,3,TRAN=HEX), -
(nnnnnn, 6, TRAN=DECIMAL))

OPERAND LIST=((CLEAR,2), -
(NOCLEAR, 4, TYPE=DEFAULT))

OPERAND STOP,4

OPERAND ATTN,4

GROUP END

See how the CLEAR and NOCLEAR operands are described in the model. These are
called mutually exclusive operands, meaning you can choose either CLEAR or
NOCLEAR, but not both. The 2 following CLEAR and the 4 following NOCLEAR
indicate the minimum length of these operands. NOCLEAR is identified as the
default operand through a TYPE=DEFAULT verb. The GROUP END clause signals the
end of this operand group.

There is another set of keyword operands that are described in a group called PLIST.

PLIST GROUP TYPE=KEYWORD
OPERAND PARM, 4
OPERAND P1,8, TRAN=ANY
OPERAND P2,8, TRAN=ANY, 0CCURS=31, OPTIONAL
GROUP END

The first parm value (P1) means that you must enter at least one value whenever
you specify the PARM keyword.

If you specify PARM with nothing following it, CA ACF2 for z/ VM stops looking at
the command model and signals a syntax error.

The OCCURS=31 verb indicates that you can enter up to 31 parm values (p2,...,p32).
However, the OPTIONAL verb says that p2, p3, are optional and you do not need to
specify them. The GROUP END clause signals the end of this operand group.

112 Command and Diagnose Limiting Guide

Elements of a Command Model

7. Thisis the second format of the IPL command. All the operands for this command
format are described in the boundaries of the FORMAT clause (all operands are
described before the FORMAT END clause).

The first operand in the second format is systemname that has a maximum length
of eight characters.

Because there is no way to know what value systemname is when you enter the
command, a transposition routine (TRAN=ANY) is used when you enter the IPL
command. This verifies that the length of systemname is one to eight characters.
This FORMAT clause also references the GROUP clause labeled PLIST (see Note 5).

8. The COMMAND END statement signals the end of this command model.

The next section describes each syntax model command language clause and its
verbs in detail.

Elements of a Command Model

COMMAND Clause

The COMMAND clause signals both the start and end of a command model. We show
the full syntax of the COMMAND clause. Explanations of the verbs for the COMMAND
clause follow the syntax.

COMMAND Start Syntax

COMMAND command name, {-}
[{OPERAND=OPTIONAL}], {-}
[{REPEATS}], {-}
[{(MDLTYPE=(ccc}], {-}
[{NOSPOOL=ALLOW|LOG | PREVENT | PREVENT-LOG}], - {-}
[{SYNERR=ALLOW|LOG | PREVENT | PREVENT -L0G}]

COMMAND End Syntax

COMMAND END

Verb Descriptions (COMMAND Clause)

command name

Specifies the name of the CP command this command model applies to. This must
be the full name of the command.

Chapter 9: Syntax Model Command Language 113

Elements of a Command Model

OPERAND=OPTIONAL

Indicates you can enter this command without an operand and there are no
defaults for any optional operands. If you do not specify OPERANDS=0PTIONAL, CA
ACF2 for z/ VM assumes that you must specify at least one operand with the
command or that there is a default value for an optional operand. For example, the
BEGIN command does not require an operand, nor does it have any default.
Therefore, the command model for BEGIN includes:

COMMAND BEGIN, OPERAND=OPTIONAL

FORMAT CLASS=G
OPERAND HEXLOC, 6, TRAN=HEX, OPTIONAL
FORMAT END

COMMAND END

Although ECHO does not require you enter an operand with the command, it does
provide a default for an optional operand. Therefore, ECHO does not need an
OPERAND=OPTIONAL subparameter.

COMMAND ECHO

FORMAT CLASS=G
OPERAND LIST=(NN,2,TRAN=DECIMAL), -
(1,1, TYPE=DEFAULT, -
TRAN=DECIMAL))
FORMAT END

COMMAND END
REPEATS

Indicates you can repeat all the formats of this command. To illustrate how this
works, review the following excerpt from the TERMINAL model and some example
commands:

COMMAND TERMINAL,REPEATS

For example, in the TERMINAL CHARDEL OFF LINESIZE 20 MODE VM command, CP
and CA ACF2 for z/ VM treat this as three separate commands:

TERMINAL CHARDEL OFF
TERMINAL LINESIZE 20
TERMINAL MODE WM

Use REPEATS on the COMMAND clause when you can repeat all the formats for a
command. The only COMMAND clause that currently uses REPEATS is the
TERMINAL command. If only some formats repeat, then specify REPEATS in the
FORMAT clause as described in the next section of this guide.

114 Command and Diagnose Limiting Guide

Elements of a Command Model

MDLTYPE=ccc

Compiles a model with an MDLTYPE that is different from the default MDLTYPE. The
default is set in the MDLTYPE operand of the CMDLIM VMO record.

NOSPOOL=ALLOW |LOG | PREVENT | PREVENT-LOG
Specifies how CA ACF2 for z/ VM handles a no spool file found condition.
ALLOW

CA ACF2 for z/ VM passes the command to CP for normal syntax checking. CA ACF2
for z/ VM does not write an SMF record.

LOG

CA ACF2 for z/ VM logs the error to SMF and then passes the command to CP to
check for CP syntax. CP returns standard CP error messages to the user if it also
detects a no spool error. You can use this option to test command models to
determine if they are correct.

PREVENT

CA ACF2 for z/ VM rejects the command and returns a nospool message to the user.
PREVENT is the default.

PREVENT-LOG

CA ACF2 for z/ VM rejects the command and logs the action. Does not cause a
violation.

SYNERR=ALLOW |LOG | PREVENT|PREVENT-LOG
Specifies how CA ACF2 for z/ VM handles a command syntax error condition.
ALLOW

CA ACF2 for z/ VM passes the command to CP for normal syntax checking. CA ACF2
for z/ VM does not write an SMF record. You can abbreviate this parameter with A.

LOG
CA ACF2 for z/ VM logs the syntax error to SMF and then passes the command to
CP, where it goes through normal CP syntax checking. You can abbreviate this
parameter with L.
Standard CP error messages are returned to the user if CP also detects a syntax
error. You can use this option to test command models to determine if they are
correct.

PREVENT

CA ACF2 for z/ VM rejects the command and returns a syntax error message to the
user. This is the default. You can abbreviate this parameter with P.

Chapter 9: Syntax Model Command Language 115

Elements of a Command Model

PREVENT-LOG

CA ACF2 for z/ VM rejects the command and logs the action. Does not cause a
violation. You can also set a global system default value for this option. For more
information, see the chapter “Controlling Syntax Error Processing for Command
Limiting.”

END
Signals the end of the command model.

COMMAND command -name

COMMAND END

FORMAT Clause

The FORMAT clause signals both the start and end of a single format of a command.
Most CP commands have multiple formats. We show the full syntax of the FORMAT
clause below.

FORMAT Start Syntax

FORMAT [{CLASS=cccccccc, }] {-}
[{REPEATS}]

FORMAT End Syntax

FORMAT END

Verb Descriptions (FORMAT Clause)

CLASS=ccccccecc

Identifies the VM privilege class of this command. You can specify up to 32 classes.
This is useful for commands, such as QUERY, that have the same format for several
privilege classes.

CLASS defaults to A-Z and 0-6. Therefore, do not specify CLASS if any privilege class
user (all users) can use the command. Also remember not to accidentally specify
CLASS=ALL or CLASS=ANY as these are interpreted literally as classes A, L, Lor A, N,
Y. See the supplied DIAL model for an example of a command format that applies to
all privilege classes.

116 Command and Diagnose Limiting Guide

Elements of a Command Model

REPEATS

Indicates that this format can occur more than once. Use REPEATS on the FORMAT
clause when only a particular command format repeats. For example, following is
an excerpt from the supplied CPTRAP model:

COMMAND CPTRAP

FORMAT CLASS=C,REPEATS
OPERAND TYPENUM, 2, TRAN=HEX
OPERAND GROUP=ENTRYTYP

FORMAT END

ENTRYTYP GROUP TYPE=OPTIONAL

GROUP END
COMMAND END

In the above example, REPEATS indicates this format of the CPTRAP command
repeats. Use REPEATS on the COMMAND clause when you can repeat all the
formats for a command.

END
Signals the end of this format for the command.

FORMAT CLASS=AG

FORMAT END

NEXTMDL Clause

The NEXTMDL clause lets you break large command models into smaller, more
manageable models. The full syntax of the NEXTMDL clause is NEXTMDL model_name.

Verb Descriptions (NEXTMDL Clause)

The model_name clause identifies the name of the model to start using. Most special

characters (such as a period), underscores, and bars are valid. The model name cannot
contain a comma, blank, or parentheses as they conflict with the compiler's delimiting
characters. The model name can be up to 12 characters long and cannot be NEXTMDL.

Chapter 9: Syntax Model Command Language 117

Elements of a Command Model

When the CMDLIM interpreter encounters a NEXTMDL clause while scanning the
FORMATS for a match, it releases the current model and brings in a model of the same
MDLTYPE as the current model and with the model_name specified in the NEXTMDL
clause. It then begins using the new model. The CMDLIM interpreter ignores the rest of
the current model. It enters NEXTMDL on the same level as a FORMAT clause. NEXTMDL
must appear after the end of the last FORMAT and the start of any GROUPs.

OPERAND Clause

CP commands use many different types of operands. The syntax model command
language provides a number of ways to define the attributes of a command operand. It
is very important that you define operands correctly in the command models.
Therefore, knowing the attributes of the operand is essential.

We explain eight formats of the OPERAND clause in this section. You can use each
format to describe a different type of operand.
Constants (format 1)

Describes an operand that always has a constant value. For example, all keyword
operands are constants.

Variables (format 2)

Describes an operand where you enter a value. For example, all device address
operands are variables.

Groups (format 3)

Describes a group of related operands by calling a GROUP clause. Each GROUP
clause contains one or more OPERAND clauses.

Spool Related (format 4)
Describes operands that are related to spool files or unit record device names.
Another Operand's Default (format 5)

Signals that the value specified for an operand is also the default value for another
operand. At present, only the supplied ATTACH model uses this format.

Effector Operands (format 6)

Describes operands that affect the way CP processes other operands. For example,
many supplied models use this format to describe operands that accept a device
address range (DETACH 0180-0188).

Mutually Exclusive (format 7)

Describes two or more mutually exclusive operands.

118 Command and Diagnose Limiting Guide

Elements of a Command Model

Interpretation Control (format 8)

Overrides the normal flow of a command as it goes through the CA ACF2 for z/ VM
model interpreter. This is very useful for describing a command that has many
similar formats.

We describe each of these formats individually with examples of how to use them in the
CA ACF2 for z/ VM-supplied models.

Constant Operands (Format 1)

Use this form of the OPERAND clause to describe an operand that has a constant value.

[{label} OPERAND value[{,minimum-length}][{,OPTIONAL}] {-}
[{, TYPE=DEFAULT}]

In the sample IPL model shown in Characteristics of a Command Model in this chapter,
the operand STOP was described as OPERAND STOP,4. This operand statement
describes the STOP operand with a minimum abbreviation of four characters. Had you
omitted the 4, the minimum length defaults to the number of characters in STOP, which
is four.

Consider the following portion of the VARY model: OPERAND ONLINE,2. Here the
minimum abbreviation is two characters, and acceptable specifications are: ON, ONL,
ONLI, ONLIN, and ONLINE. The label verb is optional and not really needed in the above
examples. For more information, see the VALUEFOR verb and Format 5 in this chapter.

Variable Operands (Format 2)

This form of the OPERAND clause describes an operand whose value is a variable term.
The transposition routine validates the value you enter and, in some cases, converts it
to a common value so that differences between a command and a rule can be resolved.
You can specify the value for any OPERAND clause that includes a transposition routine
as a pseudo operand in a command limiting rule.

[{label} OPERAND value[{,maximum-length}], TRAN=routine {-}
[{,OPTIONAL}][{, TYPE=DEFAULT}]

In the sample IPL model shown earlier, the operand vcuu was described as OPERAND
vcuu,4, TRAN=VCUU. This operand statement describes the operand VCUU with a
maximum length of four positions. CA ACF2 for z/ VM calls the transposition routine
VCUU (TRAN=VCUU) at command interpret time to see if the operand being interpreted
is a valid hexadecimal number. If it is, the transposition routine returns a binary value. If
it is not, CA ACF2 for z/ VM returns a nomatch condition. Had we omitted the 4, the
maximum length defaults to 4, the number of characters in VCUU.

Chapter 9: Syntax Model Command Language 119

Elements of a Command Model

If you use the TYPE=DEFAULT verb, the value you specify must correspond to the
transposition routine you specify. For example, in the supplied BACKSPAC model, the
default number of pages to be backspaced is decimal 1, as defined in OPERAND

1,1, TYPE=DEFAULT,TRAN=DECIMAL.

For a complete list of all the transposition routine names, see the section Transposition
Routines for Command Limiting.

Call GROUP Clause (Format 3)

This OPERAND clause calls a set of logically related operands or operands that can occur
in multiple formats.

[{label}] OPERAND GROUP=groupname

The groupname corresponds to the label that is on a GROUP clause contained in the
limits of the command description (between the COMMAND BEGIN and COMMAND
END clauses). When this clause is found by the syntax interpreter, it operates as you
called a subroutine. For example, in the sample IPL model shown earlier, the PARM
options are described as OPERAND GROUP=PLIST, where PLIST is the label on the PLIST
group that describes a logical set of operands that belong together as:

PLIST GROUP TYPE=KEYWORD
OPERAND ...

GROUP END

When the OPERAND GROUP=PLIST clause is found, it performs the PLIST group. When
the GROUP END statement is found in the PLIST group, control returns to the statement
immediately following the OPERAND GROUP=PLIST clause.

Spool Related Operands (Format 4)

This OPERAND clause describes an operand that selects spool files and the unit record
devices available to the operand.

[{label}] OPERAND value [{,maximum-length}],TRAN=routine,
SPOOLOPT=({ALL|,CON, | {PRT|PUN,RDR}}
[SELECT] [{,DEVNONLY, |RADRONLY}])

-~ -
o
=

120 Command and Diagnose Limiting Guide

Elements of a Command Model

SPOOLOPT=(PRT,RADRONLY)

You can find one example of how you can use this format in the BACKSPAC model
supplied with CA ACF2 for z/ VM: OPERAND PRT,4,TRAN=RUR,SPOOLOPT=
(PRT,RADRONLY). In this example, you can specify a printer. The transposition
routine TRAN=RUR examines the SPOOLOPT specification PRT,RADRONLY. The
operand passes the syntax check if it is a real printer (PRT) that is described to CP
and only if you use a real device address (RADRONLY). CA ACF2 for z/ VM checks the
RDEVBLOK to ensure the device address cites a real device and that it is a printer.

SPOOLOPT=(PUN,RADRONLY)

The example OPERAND PUN,3,TRAN=RUR,SPOOLOPT=(PUN,RADRONLY) is the same
as the previous one, except that you can only specify a punch (PUN) device,
provided you refer to its real device address.

SPOOLOPT=RDR

The example OPERAND RDR,6,TRAN=VUR,SPOOLOPT=RDR is taken directly from the
CLOSE model supplied with CA ACF2 for z/ VM. Here, you can specify a virtual
reader. Because you specified neither RADRONLY nor DEVNONLY, you can also
enter the reader name. For example, you can specify the virtual reader as R, Re,
Rea, Read, Reade, Reader, RDR, or any virtual address that is a reader (usually
000C).

SPOOLOPT=(CON,PRT,PUN)

The example OPERAND VUR,7,TRAN=VUR,SPOOLOPT=(CON,PRT,PUN) is similar to
the previous one, except that you can only specify a console, printer, or punch
device.

SPOOLOPT=(PRT,PUN,RDR,DEVNONLY,SELECT)

The example OPERAND RUR,7,TRAN=RUR,SPOOLOPT=
(PRT,PUN,RDR,DEVNONLY,SELECT) is taken directly from the CHANGE model
supplied with CA ACF2 for z/ VM. Here, you can specify Printer, PRT, PTR, Punch,
PCH, Reader, or RDR, provided they are cited by device name. You can also use this
operand to select items from the spool queue. The SELECT suboperand of the
SPOOLOPT verb is explained in the next section.

SPOOLOPT=SELECT

You can only use SPOOLOPT=SELECT with the following transposition routines:

m ALLSPFIL
m ALLURDEV
m CLASS

m CPSYSTEM
m DEST

s FORM

= RUR

Chapter 9: Syntax Model Command Language 121

Elements of a Command Model

m SELF

= SPOOL

m SPOOLTO
= VUR

m USER

You can only use SPOOLOPT=({,CON{,PRT{,PUN{,RDR}}}}), {, DEVNONLY |
,RADRONLY}) with the RUR and VUR transposition routines.

You can only use SPOOLOPT=({ALL}{,DEVNONLY| ,RADRONLY}) with the ALLURDEV
transposition routine.

Device Address Default (Format 5)

This OPERAND clause describes a variable term operand and specifies that the value
selected for this operand is the default setting for another operand. The transposition
routine validates the value supplied for this operand and converts it to a common value.

[{label}] OPERAND value {
[{,maximum-length}] {-
, TRAN=routine {
[{,OPTIONAL}] {
[{,VALUEFOR=1abel}]

To illustrate how you use this format, review the ATTACH model we ship with CA ACF2
for z/ VM.

FORMAT CLASS=B
OPERAND RCUU, 4, TRAN=RCUU, VALUEFOR=ATTACHAS

ATTACHAS OPERAND VCUU,4, TRAN=VCUU, OPTIONAL

FORMAT END

122 Command and Diagnose Limiting Guide

Elements of a Command Model

In this example, the operand value supplied for the first operand (RCUU) is the default
VALUEFOR the operand labeled ATTACHAS.

To further explain how this works, review this sample ATTACH command: ATTACH 0580
TO MAINT. When this command is processed by CP, real device 0580 is attached to
MAINT as virtual device 0580. The CA ACF2 for z/ VM interpreter processes operand
0580 (the RCUU OPERAND clause) and uses 0580 as the default value for the VCUU
OPERAND clause.

In many cases though, the operator probably issues ATTACH 0580 TO MAINT AS 0181.
When this command is processed by CP, real device 0580 attaches to MAINT as virtual
device 0181. The CA ACF2 for z/ VM interpreter processes operand 0580 against the
RCUU OPERAND clause and uses 0580 as the default value for the VCUU OPERAND
clause. When the 0181 operand is processed against the VCUU OPERAND clause, the
0181 supersedes the default value of 0580 in that position.

Effector Operands (Format 6)

This format of the OPERAND clause describes operands that affect the way CA ACF2 for
z/ VM processes other operands.

label OPERAND value {-}
[{,maximum-length}] {-}
[{,0CCURS=nnn}] {-}
[{, TRAN=routine}] {-}
{, TYPE=APREVADR | NONEXCL | NXTOPDEF | RANGE | SINGULAR | STOR}

TYPE=STORADDR and TYPE=APREVADR

To illustrate how the TYPE verb works, review the STCP model we ship with CA ACF2
for z/ VM. Here you can see a use for TYPE=APREVADR and TYPE=STORADDR. We
use them in the STCP model as follows:

OPERAND HEXLOC, 8, TRAN=STORADDR, TYPE=STORADDR
OPERAND HEXWORD, 16, TRAN=HEX, TYPE=APREVADR

If you issue the STCP 20000 07000700 command, the 20000 is a storage address. CA
ACF2 for z/ VM interprets the TYPE=STORADDR verb and saves the storage address
so that, when CA ACF2 for z/ VM processes the data to be stored (HEXWORD), it
updates the affected storage address.

When CA ACF2 for z/ VM processes the 07000700, the TYPE=APREVADR verb tells
CA ACF2 for z/ VM to add that the number of bytes in this hexword to the previous
storage address. After interpretation, as a result of this command, CA ACF2 for z/
VM stores 07000700 in locations 20000 through 20003. TYPE=STORADDR is only
effective when you use it with TYPE=APREVADR, as shown in the above example.

Chapter 9: Syntax Model Command Language 123

Elements of a Command Model

TYPE=NONEXCL and TYPE=NXTOPDEF

To illustrate how to use the TYPE=NONEXCL and TYPE=NXTOPDEF, review the
following excerpts from the SPOOL model.

CHAR GROUP=KEYWORD
OPERAND CHARS, 2
OPERAND NAME, 4, TRAN=ANY
OPERAND GROUP=MORECHAR
GROUP END

MORECHAR GROUP TYPE=KEYWORD, 0CCURS=3
OPERAND CHARS, 2, TYPE=NXTOPDEF
OPERAND NAME, 4, TRAN=ANY, TYPE=NONEXCL
GROUP END

If you issue the SPOOL PRT CHARS nam1 CHARS nam2 nam3 FORM STD command,
CA ACF2 for z/ VM processes the command as:

naml
Fills in the CHARS and NAME operand clauses in the CHAR GROUP clause.
nam2

Fills in the first occurrence of the CHARS and NAME operand clauses in the
MORECHAR GROUP clause.

nam3

Compared against the second occurrence of the CHARS operand clause and
gets a nomatch condition. Because you specified the TYPE=NXTOPDEF (next
operand's default), CA ACF2 for z/ VM saves the location of this clause. The
nam3 is then compared to the NAME operand clause. Because you specified
TYPE=NONEXCL (nonexclusive) verb, and it was not preceded by the keyword
CHARS, CA ACF2 for z/ VM examines the rest of the format to see if nam3 fits
anywhere else. Because it does not, nam3 is plugged into the NAME clause
and, because there is an outstanding NXTOPDEF, replaces chars in the NAME
clause.

FORM

When processed, it does not match to CHARS and does not fit the NAME operand
clause because it matched another operand elsewhere in the format.

TYPE=NONEXCL is only effective when used with TYPE=NXTOPDEF, as shown in the
above example. However, you can use TYPE=NXTOPDEF by itself.

124 Command and Diagnose Limiting Guide

Elements of a Command Model

TYPE=RANGE and TYPE=SINGULAR

The TYPE=RANGE verb says that this operand clause can accept an operand that is a
range and contains both a low and high number. The DETACH model contains an
example of this: OPERAND RCUU,7,TRAN=RCUU,TYPE=RANGE. You can only specify
TYPE=RANGE with the TRAN=RCUU, TRAN=VCUU, TRAN=LDEVXA, and TRAN=LDEV
routines. You do not have to specify TYPE=SINGULAR because it is the default
setting for all operand clauses.

OCCURS verb

The OCCURS=nnn verb indicates you can specify this particular operand more than
once. The IPL model shows how the OCCURS=nnn works in an OPERAND clause:
OPERAND,P2,8, TRAN=ANY,0OCCURS=31,0PTIONAL. In this example, you can specify
up to 31 separate PARM operand values.

You can write only one rule operand to cover the entire operand clause. This is a
permanent restriction. However, if this does not suit your needs, break the syntax
model down to be more finite:

OPERAND P2,8, TRAN=ANY, OPTIONAL
OPERAND P3,8, TRAN=ANY, OPTIONAL

OPERAND P32,8, TRAN=ANY,OPTIONAL

Operand clauses, like the one above, are for variable data that is usually
application-specific. The TAG command contains a good example.

The tagtext in the command tells an application to do a specific function. For
example, TAG DEV PRT CHICAGO tells the application to print on the device named
Chicago. RSCS uses the tagtext to control routing of spool files. You define to RSCS
all of the link IDs that RSCS can talk to. To control the IDs a user could send to,
modify the syntax model, then write rules to cover it. For example, if you had nodes
of New York, Chicago, Las Vegas, and San Diego in your network, you could make
your own version of the model by adding the following format first in the TAG
model:

OPERAND DEV,2
OPERAND VUR,7,TRAN=VUR, SPOOLOPT=(CON, PRT, PUN,RDR)
OPERAND LIST=((NEWYORK,8), -

(CHICAGO,7), -

(LASVEGAS, 8), -

(SANDIEGO, 8)

)
FORMAT END

Chapter 9: Syntax Model Command Language 125

Elements of a Command Model

With the above format, you can easily write rules that apply to your needs. To limit
Joe to only send to New York, Sue to Chicago, and Ann anywhere, you can write a
rule as:

$KEY(TAG) MDLTYPE(-)

DEV VUR NEWYORK UID(JOE) ALLOW
DEV VUR CHICAGO UID(SUE) ALLOW
DEV VUR - UID(ANN) ALLOW

Mutually Exclusive Operands (Format 7)

Format 7 of the OPERAND clause defines mutually exclusive operands. Mutually
exclusive means that you can choose one operand from the list, but not two. In this
inline list format, the value-list specification can include any of the verbs available in the
OPERAND clause. For example, you can use all of the verbs described in formats one
through six and eight in format seven.

[{label}] OPERAND LIST=((value-list), {-}

{_
{_
{_

——

(value-liist))

There are many examples of the format 7 OPERAND clause in the models supplied with
CA ACF2 for z/ VM. We took the example that follows from the IPL model. It shows how
we defined the mutually exclusive operands CLEAR and NOCLEAR.

OPERAND LIST =((CLEAR,2), -
(NOCLEAR, 4))

The BACKSPAC model contains a more intricate example of a format 7 OPERAND clause:

OPERAND LIST=((FILE,1), -
(GROUP=PAGES), -
(1,1, TYPE=DEFAULT, TRAN=DECIMAL))

There is no limit on the number of operands you can specify in a mutually exclusive list.
However, there is a size limit of 4088 bytes for a compiled command model. See the
NEXTMDL clause for information on using more than one model to describe a
command.

126 Command and Diagnose Limiting Guide

Elements of a Command Model

Interpretation Control (Format 8)

This format OPERAND clause includes additional verbs that alter the flow of command
interpretation as it proceeds through a command model. You can use all of the verbs
shown in format eight in formats one through seven.

[{label}] OPERAND value-clause, {-}
{ [,MATCH=CONTINUE |EXIT,] }{-}
{ [NOMATCH=CONTINUE|EXIT|EXITERR|NEXTFMT] }
[OPTIONAL]

Chapter 9: Syntax Model Command Language 127

Elements of a Command Model

The MATCH and NOMATCH verbs alter the flow a command follows during syntax
interpretation. The default value for these verbs are globally set and managed by the CA
ACF2 for z/ VM command model compiler. In most cases, you do not have to specify a
MATCH or NOMATCH verb. However, some of the supplied models use the NOMATCH
verb.

The ATTACH model contains a good example of how to use the NOMATCH=NEXTFMT
verb. The ATTACH command has three very similar formats as shown in the following
figure.

COMMAND ATTACH
FORMAT CLASS=B
OPERAND RCUU, 4, TRAN=RCUU
OPERAND TO, 2, TYPE=DEFAULT
OPERAND SYSTEM, 6, NOMATCH=NEXTFMT
OPERAND AS, 2, TYPE=DEFAULT
OPERAND VOLID, 6, TRAN=ANY
OPERAND 3330V,S,OPTIONAL
OPERAND VOLID, 6, TRAN=ANY,OPTIONAL
FORMAT END

FORMAT CLASS=B
OPERAND RCUU, 4, TRAN=RCUU, VALUEFOR=ATTAS
OPERAND TO, 2, TYPE=DEFAULT
OPERAND LIST=(-
(*,1,TRAN=SELF), -
(USERID, 8, TRAN=USER,, NOMATCH=NEXTFMT) -
)
OPERAND AS, 2, TYPE=DEFAULT
ATTAS OPERAND VCUU, 4, TRAN=VCUU, OPTIONAL
OPERAND R/0,1,0PTIONAL
OPERAND 3330V,S,OPTIONAL
OPERAND VOLID, 6, TRAN=ANY,OPTIONAL
FORMAT END
FORMAT CLASS=B
OPERAND LIST=((RCUU,7,TRAN=RCUU, TYPE=RANGE), -
(RCUU, 4, TRAN=RCUU, 0OCCURS=48))
OPERANDTO, 2, TYPE=DEFAULT
OPERAND LIST=(-
(*,1, TRAN=SELF), -
(USERID, 8, TRAN=USER) -
)
OPERAND R/0,1,0PTIONAL
OPERAND 3330V, S, OPTIONAL
FORMAT END
COMMAND END

128 Command and Diagnose Limiting Guide

Elements of a Command Model

As you can see, all three formats begin with the RCUU operand. The
NOMATCH=NEXTFMT properly interprets the ATTACH command. For example, if CA
ACF2 for z/ VM determines that the command does not match the first FORMAT clause,
it checks the next FORMAT clause for a match, and so on until it finds the proper
command format.

Verb Descriptions (OPERAND Clause)

The verbs you can specify in an OPERAND clause are:
OPERAND
Starts an OPERAND clause.
value-clause
Specifies the expanded value of a token. Basically there are two types:

constants
Specify the full name of the constant. For example PARM, STOP, and ATTN, as
shown in the IPL command. See the format 1 OPERAND clause for an example.

variables

Specify the same name IBM uses in the command syntax. For example, the IBM
syntax for the IPL command uses systemname, vcuu, cylno, and nnnnnn to show
that you can IPL a named system, a virtual device, a specific cylinder address, or a
virtual block address, respectively. See the format 2 operands for an example.

minimum-length

Specify the CP-defined minimum acceptable length (abbreviation) of the operand.
Only constant values use this minimum length. See the format 1 operands for an
example.

maximum-length

Specify the maximum length of the operand. Only variable values (OPERAND
clauses that specify a TRANS routine) use the maximum length. See the format 2
OPERAND clause for an example.

OCCURS=nnn

Specify the number of times this operand can repeat. For example, in the PARM
p1l(p2,...,p32) option of the IPL command, the parameters (p2,...,p32) can occur
thirty-two times. The default is OCCURS=1 and the maximum is OCCURS=119. See
the format 6 OPERAND clause for an example.

Chapter 9: Syntax Model Command Language 129

Elements of a Command Model

MATCH=CONT | EXIT

Informs the command interpreter what action to take when the operand matches
the criteria described by this OPERAND clause.

CONT

Specifies to continue going through this command format when this operand
matches this OPERAND clause.

EXIT

Stops the interpreter from looking at this OPERAND clause and returns the
interpreter to the next higher level of the model. Checks other specified
OPERAND clauses.The GROUP and FORMAT clauses globally set the default
settings for these options. See the format 8 OPERAND clause for an example.

NOMATCH=(CONT | EXIT | EXITERR | NEXTFMT)

Informs the command interpreter what action to take when the operand does not
match the criteria described for this OPERAND clause. If a default value is assigned
for this operand, it is used. The command model compiler and interpreter globally
set the defaults for these options. See the format 8 OPERAND clause for an
example.

CONT

Specifies to continue going through this command format. If you assigned a
default value for this operand, CA ACF2 for z/ VM uses it.

EXIT

Stops the interpreter from looking at this OPERAND clause and returns the
interpreter to the next higher level of the model. Checks other specified
OPERAND clauses.

EXITERR

Specifies the interpreter is to exit from the model and indicates a syntax error
occurred. Either CP or CA ACF2 for z/ VM sends a syntax error message to the
user. CP issues the error message if you specified SYNERR=LOG or
SYNERR=PREVENT in the COMMAND clause for this model or specified globally
in the CMDLIM VMO record. By default, CA ACF2 for z/ VM issues the syntax
error message because SYNERR=PREVENT is the global system default and the
default for the COMMAND clause.

NEXTFMT

Specifies the interpreter is to exit from this particular command format and use
the next format, if one is available. This is useful for commands that have
similar formats to one command, such as CHANGE.

OPTIONAL

OPTIONAL means that you do not need to enter this operand in the command. The
interpreter continues with the next OPERAND.

130 Command and Diagnose Limiting Guide

Elements of a Command Model

TRAN=routine

Names a transposition routine that validates the value specified for this operand. In
some cases, the routine also transposes the value entered for the operand into a
common value used during CA ACF2 for z/ VM rule checking. For additional
information about these transposition routines, see the appendix “Transposition
Routines for Command Limiting.” See the format 2 OPERAND clause for an example.

TYPE=operand-type

Identifies an operand type. Most of these operand types are similar to the operand
names used in commands. You can describe operand types you can use in your
locally-written CP commands. Valid operand types are:

APREVADR

This operand affects the previous storage address. For example the 0102
(hexdata) in STCP S20000 0102 means the range is 20000-20001. Refer to the
format 6 OPERAND clause for an example.

DEFAULT

This operand is a default for this token slot. CA ACF2 for z/ VM uses it i you did
not choose an overriding operand (for example, the TO in SPOOL PRT TO
userid). Refer to the format 4 OPERAND clause for an example.

NONEXCL

This is a nonexclusive operand if not proceeded by the previous operand (for
example, the namen in CHANGE spoolid CHARS namen). Refer to the format 6
OPERAND clause for an example.

NXTOPDEF

This operand is the next operand default if another operand is present (for
example, the CHARS in CHANGE spoolid CHARS namen). Refer to the format 6
OPERAND clause for an example.

RANGE

This operand contains a range of values (for example, DET 190-192 and DCP
M20000:20200, 20000.200). Refer to the format 6 OPERAND clause for an
example.

SINGULAR

Operand contains one value (for example, 0190 in DET 0190). Refer to the
format 6 OPERAND clause for an example.

STORADDR

This operand is a storage address whose range can be affected by a following
operand (for example, the 0AOBOCOD in STCP 20000 0A0OBOCOD affects the
storage range, which is really 20000-20003). Refer to the format 6 OPERAND
clause for an example.

Chapter 9: Syntax Model Command Language 131

Elements of a Command Model

SPOOLOPT=spool-opt

Describes operands that are related to spool files. For examples, see the format 4
OPERAND clause.

Valid spool-opts are:
ALL

Specifies any unit record device.

CON

Lets you enter CONSOLE, CON, or a console device address for this operand.

DEVNONLY

Requires you to refer to unit record devices by name (for example, PUNCH,
PUN, PU, PUNC, or PUN for PUNCH). Refer to the supplied TRANSFER model.
Omit both DEVNONLY and RADRONLY to specify unit record devices using a
device name or a device address.

PRT

Specifies a valid abbreviation for a PRINTER (PRT or PTR) or a printer device
address for this operand. Refer to the supplied BACKSPAC model.

PUN

Specifies a valid abbreviation for a PUNCH (PUN or PCH) or a punch device
address for this operand. Refer to the supplied BACKSPAC model.

RADRONLY

Requires you to refer to unit record devices by address only. Refer to the
supplied BACKSPAC or DRAIN models. To specify unit record devices using a
device name or a device address, omit both RADRONLY and DEVNONLY.

RDR

Specifies a valid abbreviation for a READER (RDR) or a reader device address for
this operand. Refer to the supplied SPOOL model.

SELECT

Describes operands that select spool files on the spool queue. It invokes special
processing that protects the object of the SPOOL command, including checking
the SFBLOKS in CP to obtain all information about a spool file. For example, if
you include the rule entry RDR CLASS A - UID(*) PREVENT in your CHANGE rule
and a user enters CHANGE RDR FORM STD TO FORM MINE, the SELECT
parameter examines all your spool files (FORM STD) and signals an error if any
of the spool files have a class of A.

132 Command and Diagnose Limiting Guide

Elements of a Command Model

FORM

In the supplied models, the CHANGE, QUERY (for spool files), START, SPTAPE,
and TRANSFER commands use the SELECT verb because they let you use an
alternate operand to manipulate a spool file.

In the previous example of the CHANGE command, the FORM STD is a selection
criterion. Therefore, you would code the FORMNAME operand with the SELECT
verb. The FORM MINE does not need the SELECT operand because it is not
used to choose a spool file. For these operands, your model would resemble:

FORMAT CLASS=G
OPERAND VUR,7,TRAN=VUR, SPOOLOPT=(PRT, PUN,RDR, DEVNONLY, SELECT
OPERAND LIST=((GROUP=CLASSFR), -
(SPOOLID, 4, TRAN=SPOOL , SPOOLOPT=SELECT), -
(GROUP=FORMFR))
(GROUP=DESTFR), ;
(ALL, 3, TRAN=ALLSPFIL ,SPOOLOPT=SELECT))
OPERAND GROUP=TOWHAT
OPERAND GROUP=NAME
FORMAT END

FR GROUP TYPE=KEYWORD
OPERAND FORM, 4
OPERAND FORMNAME, 8, TRAN=FORM, SPOOLOPT=SELECT
GROUP END

TOWHAT GROUP TYPE=OPTIONAL,REPEATS

FORM

OPERAND GROUP=CLASS
OPERAND GROUP=FORM

GROUP END

GROUP TYPE=KEYWORD

OPERAND FORM, 4

OPERAND FORMNAME, 8, TRAN=FORM
GROUP END

You only need to code the SELECT verb in commands where a user could perform a
set of actions to bypass security. For example, a privileged user could TRANSFER
reader files to himself, PEEK them, then TRANSFER them back. The supplied models
and recommended methods of protecting the spool file insulate you from this. On
the other hand, the ORDER command does not need the SELECT verb because this
command cannot gain access to spool files.

VALUEFOR=label

This value is the default for the operand identified by the label. For examples, see
the format 5 OPERAND clause in Device Address Default (Format 5) in this chapter.
For more information about VALUEFOR, see Rules for Defaults from Other
Operands (VALUEFOR) in the chapter “Rule Writing Guidelines.”

Chapter 9: Syntax Model Command Language 133

Elements of a Command Model

GROUP Clause

The GROUP clause simplifies the task of describing operands that are in some way
dependent on the specification of other operands. We provide four formats for the
GROUP clause so you can easily describe related operand groups.

Optional Operands (Format 1)

Describes a group of optional operands you can enter in any order.
Keyword Operand (Format 2)

Describes a group of keyword operands you must enter in a predefined order.
Required Operands (Format 3)

Describes a group of operands you can enter in any order, but you must enter at
least one operand in the group.

End GROUP (Format 4)

Signals the end of a GROUP clause.
Examples of using each format of the GROUP clause follow.
Optional Operands (Format 1)

Use this GROUP clause to describe a group of optional operands you can specify in any
order.

label GROUP TYPE=OPTIONAL {-}
[{,REPEATS}]

134 Command and Diagnose Limiting Guide

Elements of a Command Model

In this format, REPEATS indicates that the group of operands can occur more than once
in a single command. The supplied ORDER model, shown in the figure below, contains
an example of using the REPEATS verb in a GROUP clause.

COMMAND ORDER

FORMAT CLASS=G

-> OPERAND VUR,7,TRAN=VUR, -
-> SPOOLOPT=(PRT, PUN, RDR, DEVNONLY)
-> OPERAND GROUP=WHAT

FORMAT END

-> WHAT GROUP TYPE=OPTIONAL,REPEATS

-> OPERAND GROUP=CLASS
-> OPERAND GROUP=FORM

-> OPERAND GROUP=SPOOL
-> GROUP END

CLASS GROUP TYPE=KEYWORD
OPERAND CLASS, 2
OPERAND C, 1, TRAN=CLASS
GROUP END
FORM GROUP TYPE=KEYWORD
OPERAND FORM, 4
OPERAND FORMNUM, 8, TRAN=FORM
GROUP END

SPOOL GROUP TYPE=KEYWORD
OPERAND SPOOLID,4, TRAN=SPOOL
GROUP END

COMMAND END

The VUR operand is described in the ORDER model. Here, there is no REPEATS verb.
However, we describe the other operands you can enter when you specify the ORDER
RDR ... command in a GROUP clause labeled WHAT.

The WHAT group clause includes REPEATS indicating the operands in the group can
repeat. In effect, the RDR operand is constant, while the operands after RDR repeat. For
example, if you issue the command ORDER RDR CLASS A FORM STD 9999, CA ACF2 for z/
VM and CP treat the command as three separate commands, such as:

ORDER RDR CLASS A
ORDER RDR FORM STD
ORDER RDR 9999

Chapter 9: Syntax Model Command Language 135

Elements of a Command Model

Keyword Operands (Format 2)

Use this GROUP clause format to describe a group of keyword-type operands that you
must specify in a predefined order.

label GROUP TYPE=KEYWORD {-}
[{,0CCURS=nnn|REPEATS}]

136 Command and Diagnose Limiting Guide

Elements of a Command Model

The TYPE=KEYWORD verbs in the model require you to enter the appropriate keyword
followed by the keyword value.

For an example of how to use the format 2 GROUP clause, see the PURGE model. A
portion of the PURGE model follows:

COMMAND PURGE

FORMAT CLASS=G
OPERAND LIST=((VUR,7,TRAN=VUR, -
SPOOLOPT=(RDR, PRT, PUN, -
DEVNONLY, SELECT)), -
(ALL, 3, TRAN=ALLURDEV, -
SPOOLOPT=(SELECT,ALL)))
OPERAND GROUP=WHAT
FORMAT END

WHAT GROUP TYPE=OPTIONAL,REPEATS
OPERAND GROUP=CLASS
OPERAND GROUP=FORM
OPERAND GROUP=SPOOL
OPERAND GROUP=ALL
GROUP END

-> CLASS GROUP TYPE=KEYWORD
OPERAND CLASS,2
OPERAND C, 1, TRAN=CLASS, SPOOLOPT=SELECT
GROUP END

-> FORM GROUP TYPE=KEYWORD
OPERAND FORM, 4
OPERAND FORMNUM, 8, TRAN=FORM, SPOOLOPT=SELECT
GROUP END

SPOOL GROUP TYPE=OPTIONAL
OPERAND SPOOLID,4, TRAN=SPOOL , SPOOLOPT=SELECT
GROUP END

ALL GROUP TYPE=OPTIONAL
OPERAND ALL,3, TRAN=ALLSPFIL, -
SPOOLOPT=SELECT, TYPE=DEFAULT
GROUP END

COMMAND END
Examine the GROUP clauses for the CLASS and FORM groups in the above example.

According to this model, a class G user can PURGE files that are assigned to a particular
CLASS, FORM, or a combination of CLASS and FORM.

Chapter 9: Syntax Model Command Language 137

Elements of a Command Model

For example:
PURGE RDR CLASS A
Purges all RDR files that have CLASS=A
PURGE RDR FORM STD1
Purges all RDR files that have FORM=STD1
PURGE RDR FORM STD1 CLASS A
Purges all RDR files that have CLASS=A and FORM=STD1.

Differences Between REPEATS and OCCURS

The GROUP TYPE=KEYWORD clause accepts the OCCURS verb that indicates you can
specify the entire group of operands a definite number of times in a single command.
Refer to the supplied SPOOL model for an example of how to use OCCURS.

The difference between REPEATS and OCCURS is that REPEATS means operands in this
group can replicate themselves an infinite number of times, limited only by the actual
size of the command buffer. OCCURS means operands in the group replicate themselves
a fixed number of times.

Command limiting treats iterations of a command with a REPEATS definition as if they
were separate commands. For example, assume you have four files in your virtual
printer queue with spool IDs of 0091, 0092, 0093, and 0094. If you issue the PUR PRT 91
92 93 94 command, the spool ID is defined as a repeating operand. CP and command
limiting would process the command as:

PUR PRT 91
PUR PRT 92
PUR PRT 93
PUR PRT 94

Command limiting does not treat iterations of OCCURS as multiple commands. For
example, you can specify the CHARS operand on the SPOOL command up to four times:

SP PRT TO PSF CL P FO 010110 CHARS MONO CHARS TEXT CHARS CE12
CHARS PT24 646X

In the PURGE command above, each iteration is treated as a separate command and
each iteration is compared against the entire rule set. The SPOOL command is only
compared against the rule set once, but all combinations of each iteration of the CHARS
operand are used against the qualifying rule entry.

138 Command and Diagnose Limiting Guide

Elements of a Command Model

Required Operands (Format 3)

The format 3 GROUP clause describes a group of operands you can specify in any order,
but you must code at least one operand in the group.

label GROUP TYPE=REQUIRED {-}
[{,REPEATS}]

Following is an excerpt from the supplied SPOOL model that shows how to use the
format 3 GROUP clause TYPE=REQUIRED.

COMMAND SPOOL

FORMAT CLASS=G
OPERAND LIST=((RDR,6,TRAN=VUR, -
SPOOLOPT=(RDR,DEVNONLY)), -
(RDR, 4, TRAN=VUR, -
SPOOLOPT=(RDR, RADRONLY)))
OPERAND GROUP=RDR
FORMAT END

-> RDR GROUP TYPE=REQUIRED

OPERAND GROUP=CLASS

OPERAND LIST=((CONT,3), -
(NOCONT, 3))
OPERAND LIST=((EOF,3), -
(NOEOF, 3))
OPERAND LIST=((HOLD,2), -
(NOHOLD, 3))
GROUP END

The RDR group includes TYPE=REQUIRED. You must enter one of the operands described
in the RDR group whenever you issue the SPOOL RDR CLASS * command.

End GROUP (Format 4)

The format 4 GROUP clause signals the end of an operand group.

GROUP END

Verb Descriptions (GROUP Clause)

The verbs you can use in a GROUP clause are:
label

Specifies a one- to eight-character name of the GROUP clause.

Chapter 9: Syntax Model Command Language 139

Elements of a Command Model

TYPE=OPTIONAL
None. You can enter one or more of the operands in this group.
TYPE=KEYWORD

Identifies the beginning of a group of operands that you must enter in a predefined
order. The operands are required. For an example, see the format 2 GROUP clause
in Keyword Operands (Format 2) in this chapter.

TYPE=REQUIRED

Identifies the beginning of a group of operands where you must enter at least one
operand in any order. For an example, see the format 3 GROUP clause in Required
Operands (Format 3) in this chapter.

REPEATS

Indicates this group of operands can occur more than once in a single command.
For an example, see the format 4 GROUP clause in End GROUP (Format 4) in this
chapter.

OCCURS=nnn
Replicates all the control blocks in the group nnn times.

As explained before, the difference between REPEATS and OCCURS is that REPEATS
means operands in this group can replicate themselves an infinite number of times,
limited only by the actual size of the command buffer. OCCURS means operands in
the group replicate themselves a fixed number of times.

END

Signals the end of a group of operands.

Differences Between REPEATS and OCCURS

As explained before, the difference between REPEATS and OCCURS is that REPEATS
means operands in this group can replicate themselves an infinite number of times,
limited only by the actual size of the command buffer. OCCURS means operands in the
group replicate themselves a fixed number of times.

END

Signals the end of a group of operands.

COMMENT Clause

The COMMENT clause places comments directly in the command model. You might
include comments if you change a supplied command model.

CA ACF2 for z/ VM treats any line starting with an asterisk (*) in column one as a
comment. All of the supplied model files include comments to indicate when we added
or changed clauses.

140 Command and Diagnose Limiting Guide

Elements of a Command Model

NULL Clause

The NULL clause places blank lines directly in the command model. You might include
blank lines to make reading a command model easier.

Chapter 9: Syntax Model Command Language 141

Chapter 10: Using the Model Setting

If you have added or changed CP commands and you want to control the command
execution or log their use, you must create a syntax model or change the distributed
model.

This chapter explains the ACF subcommands you need to create or change syntax
models. You should also review the chapter “Rule Writing Guidelines” to obtain a full
understanding of how rules are interpreted. Use this chapter as a reference aid when
you want to create, modify, display, test, or list models.
The following commands are explained in this chapter:
COMPILE
Converts rule sets into the form needed by CA ACF2 for z/ VM.
DECOMP
Lists previously stored rule sets.
DELETE
Deletes command limiting rule sets.
LIST
Lists previously stored rule sets.
STORE
Stores compiled rule sets on the Infostorage database.
TEST

Tests the correctness of a rule set.

This section contains the following topics:

Creating a Model (see page 144)

Modifying a Model (see page 152)

COMPILE Subcommand (see page 153)

The DECOMPILE Subcommand (see page 155)
The DELETE Subcommand (see page 155)

Chapter 10: Using the Model Setting 143

Creating a Model

Creating a Model

To create a syntax model, follow these six steps:

1. Determine the syntax of the command.

2. Create a syntax model.
3. Compile the model.
4. Create atestrule.

Test the model.

6. Activate command limiting.

Determine the Syntax of the Command

Before you create a syntax model, examine the syntax of the command and decide
exactly what you want command limiting to do for you. If you want to log the execution
of a command or control who can use it, you can write a simple model. If you want to
control who can who can use certain operands or the value of an operand, you must
write a complete model.

Listed below is the VSNAP command for the V/SNAP product from VM Systems Group.

We use it here as a sample of adding a CP command. For more information about the
CA ACF2 for z/ VM interface for V/SNAP, see the Other Products Guide.

The syntax of the VSNAP command is:

VSNAP USER useridl [hexlocl 1[{ - } [hexloc2 1][TO*]
[0 1I{: } [END 11[TO userid2]

[1[SYSTEM 1

[{.{ [bytecount]][1

[[END 110 FORMAT vmtype 1]

[DSS 1

[*dumpid]

[CP]

[ALL]

[V=R]

0-END TO * are the defaults for the first format. If you do not specify any operands, CP is
the default.

144 Command and Diagnose Limiting Guide

Creating a Model

Create a Test Syntax Model

The next step in creating or changing a syntax model is to create a CMS file that contains
the model control statements. The filename can be any legal CMS filename, but the file
type must be MODEL.

If you only want to control who can execute the command or log the use of the
command, create a simple model. A simple model for the VSNAP command would
contain the following statements:

COMMAND VSNAP
FORMAT CLASS=ACE
OPERAND ANYOPERANDS, 240, TRAN=REST
FORMAT END

COMMAND END

Chapter 10: Using the Model Setting 145

Creating a Model

A complete model for the VSNAP command contains the following statements:

COMMAND VSNAP

FORMAT CLASS=ACE
OPERAND USER, 4
OPERAND USERID, TRAN=USER
OPERAND LIST=((HEXLOC,13,TRAN=STVDMP), -
('O-END',5, TRAN=STVDMP, TYPE=DEFAULT))
OPERAND GROUP=0PTIONS
OPERAND DUMPID, 100, TRAN=REST, OPTIONAL
FORMAT END

FORMAT CLASS=ACE
OPERAND LIST=((ALL,3), -
('v=R',3), -
(CP,2,TYPE=DEFAULT))
FORMAT END

OPTIONS GROUP TYPE=OPTIONAL
OPERAND LIST=((SYSTEM,5), -
(GROUP=TO))
OPERAND GROUP=FORMAT
OPERAND DSS, 3
GROUP END

GO GROUP TYPE=KEYWORD
OPERAND TO, 2, TYPE=NXTOPDEF
OPERAND LIST=((*,1,TRAN=SELF,TYPE=DEFAULT), -
(USERID, 8, TRAN=USER))
GROUP END
FORMAT ~ GROUP TYPE=KEYWORD
OPERAND FORMAT,6
OPERAND VMTYPE, 8, TRAN=ANY
GROUP END

COMMAND END

Guidelines for Writing Models

When writing models, follow these guidelines:
m The file type must be MODEL.

m Where possible, arrange the formats in the model by privilege class. Classes A
through Z, class ALL, then class ANY. If a format applies to multiple classes, use the
lowest value class in the format (A is the lowest class, B is greater than A, and so
on).

146 Command and Diagnose Limiting Guide

Creating a Model

For performance purposes, list the most specific formats first in a class group. An
operand that has a single constant value is more specific than one that is a variable.
Variables have transposition routines. A single constant value is more specific than
constants in mutually exclusive list.

Weigh the previous two guidelines against the complexity of any command. For
example, the IBM SET and QUERY commands are so complex, it is much easier to
code the model as documented.

If you can issue the command with no operands and it has a default operand, that
format must be the last one.

Only use transposition routines when you want to control differing values of an
operand position or to differentiate between two similar formats.

Some of the transposition routines are very specific, and may only apply to a
specific CPU. For example, to qualify an operand in the USER transposition routine,
the user ID must exist in the VM directory. Therefore, you must thoroughly
understand the qualifications of a transposition routine before using it.

Where possible, use the generic ANY or REST transposition routines. The limitation
of the ANY transposition routine is that you cannot effectively control different
variable values through rules. You can only use the REST transposition routine on
the last operand in a format.

Where practical, all of the distributed models let you write rules to give you the
most control over a command. We coded them using specific transposition
routines. Where appropriate, you can change models to meet your needs and
improve the performance of command limiting.

If the operand value contains characters other than alphanumeric or an asterisk (*),
enclose the value in single quote marks.

Once a command matches the CLASS criteria and matches the first operand in a
format, the command continues to be validated against the format until CA ACF2
for z/ VM finds a NOMATCH=NEXTFORMAT condition.

All OPERAND clauses coded in the FORMAT area are required unless you code them
with the OPTIONAL operand or with a default value.

Some CP commands accept more operands than are documented and, in many
cases, the command processors ignore them. Set an appropriate SYNERR option to
deal with them or code an operand clause to soak up the extra operands. For
example, OPERAND JUNK,140,TRAN=REST.

CA ACF2 for z/ VM command limiting is not aware of all of the finer points of a
command; it can only deal with commands in a general fashion. When you execute
a command with a bad syntax, command limiting can only tell which operand was
bad, but not why. In these cases, set a systemwide SYNERR option, put it on the
rule, or set it for the individual having problem:s.

Chapter 10: Using the Model Setting 147

Creating a Model

Analysis of the VSNAP Model

Users with privilege classes of A, C, or E can execute both formats of the VSNAP
command, so guideline number two does not apply.

The first format, USER userid is more specific than the second format, so it is put first in
the model.

You can execute the VSNAP command without any operands. The default operand is CP,
so that format must be last.

If you do not want to control what user IDs can be forced or to what user IDs the dump
is spooled, change the transposition routines on the USERID operands to ANY. Notice
that the VMTYPE operand has a transposition routine of ANY and that the DUMPID
operand is coded with the REST transposition routine. To control which DUMPIDs can be
used, you must code all of the possibilities for the DUMPID in a mutually exclusive list.

The 0-END and V=R operands contain nonalphanumeric characters and are enclosed in
single quotes.

Notice where we coded the OPTIONAL and TYPE=DEFAULT operand values. To control
the VSNAP command based on the first two operands of the command, you can simplify
the model and end up with the following command model:

COMMAND VSNAP

FORMAT CLASS=ACE

OPERAND USER, 4

OPERAND USERID, TRAN=USER

OPERAND OTHEROPS, 180, TRAN=REST, OPTIONAL
FORMAT END

FORMAT CLASS=ACE
OPERAND LIST=((ALL,3), -
('vV=R',3), -
(CP, 2, TYPE=DEFAULT))
FORMAT END

COMMAND END

148 Command and Diagnose Limiting Guide

Creating a Model

Compile the Model

You can compile your syntax model from the MODEL mode of the ACF command. If a
command model already exists with the same command name, or if you just want to
test your syntax model, we recommend that you do not compile the model with the
current MDLTYPE. For testing purposes and to isolate your work from the live models
and rules, you might use a MDLTYPE of TST.

acf

ACF

set model

MODEL

compile vsnap mdltype(tst)

Create a Test Rule

Test the Model

To determine if your syntax model performs as it should, you must test it. To test a
model, write a dummy rule. Using the above example and recommendations, the rule
should contain the following statements in a CMS file called VSNAP RULE.

$KEY (VSNAP) MDLTYPE(TST)
- UID(*) ALLOW

From the CMDLIM mode, enter the following to compile and store the rule:

acf

ACF

set cmdlim

CMDLIM

compile vsnap nolist
ACFxxx510I ACF compiler entered

ACFxxx551I Total record length=165 bytes - 4 percent utilized
ACFxxx769I Rule VSNAP, MDLTYPE TST, stored

CMDLIM

To be sure your model behaves as intended in a production environment, thoroughly
test the syntax model. You should test both valid and invalid operand combinations.
Before you begin testing, you should probably have a hardcopy of both the syntax of the
command and your syntax model. If your command and model are complex, you may
also want to write an exec to drive the test. This exec can also come in handy when you
need to write rules and want to test the correctness of them.

Chapter 10: Using the Model Setting 149

Creating a Model

You can use the following rudimentary exec to drive the test.

/* THIS EXEC TESTS VARIOUS COMBINATIONS OF THE VSNAP COMMAND */
'"ID (STACK'

pull userid .;

say ' '

say 'VALID VSNAP COMBINATIONS'

say ' '

queue 'SET CMDLIM'
queue 'TEST VSNAP MDLTYPE(TST)'
queue 'CLASS(A)'

queue 'O(USER MAINT)'

queue 'O(USER MAINT O-END)'

queue 'O(USER MAINT O-END SYSTEM)'

queue 'O(USER MAINT O-END TO *)'

queue 'O(USER MAINT O-END TO ' userid ')'

queue 'O(USER MAINT O-END TO ' userid 'FORMAT xxxx)'

queue 'O(USER MAINT O-END TO ' userid 'FORMAT xxxx DUMPID xxxx)'
queue 'O(USER MAINT O-END TO ' userid 'FORMAT xxxx DSS DUMPID xxxx)
queue 'O(ALL)'

queue '0O(V=R)'

queue '0O(CP)'

queue 'END'’

queue 'END'’

ACF

say ' '

say 'SOME INVALID VSNAP OPERAND COMBINATIONS'
say ' '

queue 'SET CMDLIM'
queue 'TEST VSNAP MDLTYPE(TST)'
queue 'CLASS(A)'

queue 'O(USERMAINT)'

queue 'O(USER XMAINT)'
queue 'O(USER GEORGEIOUS)'
queue 'O(ALL WHET)'

queue 'O(ALT)'

queue 'O(V-R)'

queue '0(CQ)’

queue 'END'

queue 'END'

ACF

exit

150 Command and Diagnose Limiting Guide

Creating a Model

You can issue the exec from CMS and observe the following:

Ready; T=0.01/0.01 18:33:11
vsnap

valid vsnap combinations
ACF

CMDLIM

cmd=vsnap, mdltype=tst

THE FOLLOWING PARAMETERS ARE IN EFFECT:
DATE=01/04/00, TIME=*##*, UID=tttwrr SOURCE=FHH wrrk
CLASS=A
OPERANDS=

THE FOLLOWING WOULD APPLY: ALLOW (RELATIVE RULE ENTRY 1)

THE FOLLOWING PARAMETERS ARE IN EFFECT:
DATE=01/04/00, TIME=*¥#*, UID=tttwrr, SOURCE=HHHHkwrs
CLASS=A
OPERANDS=USER MAINT

CMDLIM

some invalid vsnap operand combinations
ACF

CMDLIM

cmd=vsnap, mdltype=tst

THE FOLLOWING PARAMETERS ARE IN EFFECT:
DATE=01/04/00, TIME=*#t*, UID=tttwrr, SOURCE=FHHHwrik
CLASS=A
OPERANDS=

THE FOLLOWING WOULD APPLY: ALLOW (RELATIVE RULE ENTRY 1)
THE FOLLOWING PARAMETERS ARE IN EFFECT:
DATE=01/04/00, TIME=*#*, UID=tttwrr, SOURCE=FHHHwrik
CLASS=A
OPERANDS=USERMAINT

COMMAND SYNTAX ERROR, LID SYNERR=LOG (OPERAND NUMBER 1 IS IN ERROR)

CMDLIM
Ready; T=0.16/0.69 18:33:41

Chapter 10: Using the Model Setting 151

Modifying a Model

Model Problem Support

If your results do not work as expected, fix the model, recompile it, and execute the test
again. If you cannot determine what the problem is, contact your local CA ACF2 for z/
VM support representative for assistance. Before contacting CA ACF2 for z/ VM support,
have the following ready:

m The syntax of the command and any related documentation
m A hardcopy of the model

m The exec that drove the test (if you used one)

m Console log output from the model and rule compile

m The output from the test command.

If the support personnel cannot solve your problem on the phone, you may need to
send the above information to them.

Activate Command Limiting
Your command model is almost ready to use. But before going into production, you
should perform the following steps:
m Modify the command limiting rule to perform as needed.
m Use the test exec to ensure that the rule is performing as expected.

m Compile the model under the current MDLTYPE. To determine the MDLTYPE,
display the CMDLIM VMO record or issue the ACF SHOW CMDLIM command.

m Compile the rule under the current MDLTYPE.
m Change the CMDLIM VMO record to limit your command.

m Delete the test model and rule you created earlier.

Modifying a Model

To add operands or new formats to an existing CP command, follow these steps:
m Determine the syntax of the command.

m Decompile the existing syntax model into a CMS file or extract the model of the
command from the distributed model file

® Modify the syntax model.
m Compile the model under a test MDLTYPE.

m Create a test rule.

152 Command and Diagnose Limiting Guide

COMPILE Subcommand

m Test the model.
m Activate command limiting.

Continuing with the previous VSNAP example, V/SNAP adds a format to the QUERY
command. Add this new format to the QUERY command model:

FORMAT CLASS=ALL
OPERAND VSNAP, 5
FORMAT END

After establishing the MODEL setting of the ACF command, you can compile command
models.

acf

ACF

set model
MODEL

Under the MODEL setting, you can use any of the following ACF subcommands:
= COMPILE
m DECOMPILE

m DELETE
= END

= HELP

= SET

= SHOW

The common subcommands END, HELP, SET, and SHOW are explained in the
Administrator Guide. The other commands, specific to the MODEL setting, are explained
in this chapter.

COMPILE Subcommand

Under the MODEL setting, the syntax of the COMPILE subcommand is:

[MDLTYPE(mdltype)
COMPILE filename [LIST|NOLIST

[STORE |NOSTORE

[FORCE |NOFORCE

[—

Chapter 10: Using the Model Setting 153

COMPILE Subcommand

Under the MODEL setting, COMPILE takes the following parameters:
filename

Specifies the CMS file that contains the Syntax Model Command Language (SMCL)
statements. You must create this file before you use the COMPILE subcommand.
The file type must be MODEL.

MDLTYPE(mdItype)

Specifies the type of command model to compile. By default, CA ACF2 for z/ VM
uses the value specified in the CMDLIM VMO record. Normally, you do not code this
parameter unless you want to change the model type from the default.

LIST|NOLIST

Displays the input to the compiler on your screen. NOLIST prevents the display. LIST
is the default. If you compile with the LIST option, you see several comments
displayed on your screen after all the models are compiled. This is normal. They are
displayed because this is a maintenance log.

STORE|NOSTORE

Stores the command model automatically at compilation time. NOSTORE does not
automatically store the command model. You can use NOSTORE to test for errors in
the syntax model statements. STORE is the default.

FORCE | NOFORCE

Stores the command model, regardless of whether it currently exists. NOFORCE
stores the command model only if it did not already exist. FORCE is the default.

There is a SET FORCE|NOFORCE subcommand that defaults to SET FORCE. Use the
FORCE|NOFORCE parameter of COMPILE to override the SET value, or use the SET
subcommand to change the defaults for the COMPILE subcommand. For example, you
can issue a SET NOFORCE to change the default for COMPILE to NOFORCE.

Modifying a Command Model

Before you can modify a command model, you must decompile it. We recommend you
decompile the model into a CMS file for easier modification and testing. Decompile the
model under the MODEL setting of ACF as shown below:

acf

ACF

set model
MODEL

154 Command and Diagnose Limiting Guide

The DECOMPILE Subcommand

The DECOMPILE Subcommand

Under the MODEL setting, the syntax of the DECOMPILE subcommand is:

{ * } [INTO(filename)]
DECOMP { model } [MDLTYPE() | (mdltype|mdlmask)]
{ LIKE(mdlmask)}

* (asterisk)

Decompiles the model you previously worked on in this session.
model

Decompiles the specific model.
LIKE(mdImask)

Decompiles all models that match the specified mask.
INTO(filename)

The CMS filename where the model is decompiled into. The file type is always
MODEL.

MDLTYPE() | (mdltype | mdimask)

Decompiles this type of command model. Valid options are () (null), mdltype (the
three-character model type), or mdimask (a mask for the model type). By default,
CA ACF2 for z/ VM uses the value specified in the CMDLIM VMO record.

The DELETE Subcommand

Under the MODEL setting, the syntax of the DELETE subcommand is:

{ * }
DELETE { model } [MDLTYPE (mdltype)]
{ LIKE(mdlmask)}

Deletes the model previously worked on in this session.
model

Deletes this specific model.
LIKE(mdImask)

Deletes all models that match the specified mask.

Chapter 10: Using the Model Setting 155

The DELETE Subcommand

MDLTYPE(mdItype)

Deletes this type of command model. By default, CA ACF2 for z/ VM uses the value
specified in the CMDLIM VMO record.

156 Command and Diagnose Limiting Guide

Chapter 11: Transposition Routines
for Command Limiting

The chapter “Rule Writing Guidelines” explained the basic concept of transposition
routines. This appendix explains these routines in more detail. As a command limiting
rule writer, you should be familiar with these routines.

Transposition routines transpose rule entries and operand values to common values to
ensure proper matching between a rule and a command. For instance, the transposition
routine VCUU checks to see that the entered value is a valid hexadecimal number. If it
is, the routine converts the hexadecimal value to a binary fullword.

When properly understood, transposition routines make rule writing easier. This is
because most of the routines change variable operand values into constant values that
you can specify in a rule entry. For example, the routine transposes the ATTACH 381 TO
* AS 299 command to ATTACH 381 TO OWNER AS 299. The routine replaces the asterisk
with the constant OWNER.

This section contains the following topics:

Transposition Routines (see page 157)

Transposition Routines

ALLSPFIL

ALLSPFIL accepts all spool files. This routine validates that the data specified in the
command is valid decimal data. When used with SPOOLOPT=SELECT, the operand
selects files from the spool queue and is interpreted as the highest numbered spool
file selected.

ALLSYS

ALLSYS accepts the keyword ALL on a CSE command and the pseudo operand ALL
on arule. The pseudo operand ALL in a rule matches each system name, not just
the keyword ALL on a command line. On a rule with the ALL pseudoname, each
system name in the CSESYS table is matched to the system name on the command.
If any one matches, this rule matches the command.

Chapter 11: Transposition Routines for Command Limiting 157

Transposition Routines

If a rule has a specific system name and the command has the keyword ALL in it,
conditional processing is done to match this rule to the command. If the rule
specifies ALLOW, the rule only matches the keyword ALL when it matches every
name in the CSE name list. This means that if you allow commands for one system,
you do not necessarily allow the command for all systems.

If, however, the rule is a PREVENT rule, the rule matches the keyword ALL if it
matches any name in the CSE name list. In other words, if a rule prevents any single
system and allows the rest, the routine prevents the ALL keyword on the command.

ALLSYS works like an ANY transposition routine on non-XA systems. Test these
transposition routines on XA systems.

ALLURDEV

ALLURDEV accepts spool queues and converts the words PRINTER, PUNCH, READER,
and CONSOLE to PRT, PUN, RDR, and CON, respectively. When you use this routine
with SPOOLOPT=SELECT, it selects files from the spool queue. The routine also
checks to ensure that the specified device is a real unit record device.

ANY

ANY accepts any operand as long as it is not greater than the maximum allowed
length of the operand. The value of the operand is accepted as entered in the
command syntax. For example, the password operand of the AUTOLOG command
uses the ANY routine.

CLASS

CLASS validates that the operand is a valid class character. Possible classes are A-Z,
0-9, or * that means all classes. When you use this operand with
SPOOLOPT=SELECT, it selects files from the spool queue. For example, the CLASS
operand of the CHANGE command uses the CLASS routine.

COPY

COPY accepts any decimal operand as long as it is not greater than the maximum
allowed length of the operand. The value of the operand is accepted as entered in
the command syntax. When used with SPOOLOPT=SELECT, it selects files from the
spool queue.

Below is an example using no masking. The number portion must be a valid decimal
digit.

Rule Operand Interpreted As
0000000000
0000000001

0000 0000000000
0000000009

0009 0000000009

158 Command and Diagnose Limiting Guide

Transposition Routines

Below is an example of using an asterisk (*) for masking. The transposition routine
converts any operand with an asterisk to a low and a high range. It converts
character positions with an asterisk in the low range to zeros and converts
character positions with an asterisk in the high range to nines.

Rule Operand

Interpreted As

0* 0000000000-0000000009
1* 0000000010-0000000019
5% 0000000050-0000000059
1 0000000010-0000000919
**1 0000000001-0000000991
6** 0000000600-0000000699

Following is an example of using a dash (-) for masking. The transposition routine

converts any operand with a dash to a low and a high range. The value before the
dash becomes the low range. The value after the dash becomes the high range. If
you omit the high range, then the high range defaults to the largest value that the
transposition routine can convert to a fullword.

Rule Operand

Interpreted As

4- 0000000004-2147483647
400- 0000000400-2147483647
12345- 0000012345-2147483647
1-100 0000000001-0000000100
256-512 0000000256-0000000512

40000-80000

0000040000-0000080000

Below is an example of using a combination of asterisks and dashes for masking.

Rule Operand

Interpreted As

*5- 0000000005-2147483647
5%- 0000000050-2147483647
SH*- 0000000500-2147483647
Sk 0000050000-2147483647
1Hk*H 0000000100-0000000299

KGR KK Kk

0000000060-0000099499

Chapter 11

: Transposition Routines for Command Limiting 159

Transposition Routines

CPSYSTEM

CPSYSTEM accepts the SYSTEM keyword that means the system SPOOL Q. When
you use this operand with SPOOLOPT=SELECT, it selects files from the spool queue.

DECIMAL

For a command request, DECIMAL checks to be sure the data specified in the
command is really decimal data. For a rule validation request, DECIMAL checks for
masking. If there is no masking in the rule, the routine treats the rule like a
command; otherwise, the routine builds an upper and lower range and checks both
for decimal data. Masking in this case is treated as numeric, with each asterisk (*)
occupying a decimal position.

You can specify TYPE=RANGE to denote a decimal range.

Below is an example using no masking. The number portion must be a valid decimal
digit.

Rule Operand Interpreted As
0 0000000000
1 0000000001
0000 0000000000
9 0000000009
0009 0000000009

Below is an example of using an asterisk (*) for masking. The transposition routine
converts any operand with an asterisk to a low and a high range. It converts
character positions with an asterisk in the low range to zeros and converts
character positions with an asterisk in the high range to nines.

Rule Operand Interpreted As

o* 0000000000-0000000009
1* 0000000010-0000000019
5* 0000000050-0000000059
1 0000000010-0000000919
**1 0000000001-0000000991
6** 0000000600-0000000699

160 Command and Diagnose Limiting Guide

Transposition Routines

Following is an example of using a dash (-) for masking. The transposition routine
converts any operand with a dash to a low and a high range. The value before the
dash becomes the low range. The value after the dash becomes the high range. If
you omit the high range, then the high range defaults to the largest value the
transposition routine can convert to a fullword.

Rule Operand Interpreted As

4- 0000000004-2147483647
400- 0000000400-2147483647
12345- 0000012345-2147483647
1-100 0000000001-0000000100
256-512 0000000256-0000000512
40000-80000 0000040000-0000080000

Below is an example of using a combination of asterisks and dashes for masking.

Rule Operand Interpreted As
*5- 0000000005-2147483647
5*- 0000000050-2147483647
S 0000000500-2147483647
Gk, 0000050000-2147483647
LH*QHX 0000000100-0000000299
KX HELHE 0000000060-0000099499
In the sample rule below, user OPR1 can issue the ECHO command 001 to 991
times. The second rule entry lets user OPR2 issue the ECHO command any number
of times (NN is the pseudo operand). The third entry lets user OPR3 issue the ECHO
command once.
$KEY (ECHO)
**] UID(OPR1) ALLOW
NN UID(OPR2) ALLOW
1 UID(OPR3) ALLOW
DEST

DEST accepts any operand as long as it is not greater than the maximum allowed
length of the operand. The routine accepts the value of the operand as entered in
the command syntax. When you use this operand with SPOOLOPT=SELECT, it
selects files from the spool queue. For example, the value for the DEST operand in
the CHANGE command uses the DEST routine.

Chapter 11: Transposition Routines for Command Limiting 161

Transposition Routines

DSNAME

DSNAME validates that:

m The data set name is not more than eight characters between the periods (.),
which are delimiters.

m The data set name is not less than one character.
m There are no embedded blanks in the string.
m The total length of the string is not greater than 24 characters.

For example, the dsname option for the NAME operand of the CHANGE command
uses the DSNAME routine.

FORM

FORM accepts any operand as long as it is not greater than the maximum allowed
length of the operand. The routine accepts the value of the operand as entered in
the command syntax. When you use this operand with SPOOLOPT=SELECT, it
selects files from the spool queue. For example, the value for the FORM operand in
the CHANGE command uses the FORM routine.

HEX is the same as DECIMAL except that it checks for valid hexadecimal arithmetic
values. The input is right-justified and hex zero filled and then converted to a binary
number. Refer to the HEXDATA transposition routine below for operands with
hexadecimal character strings. You can specify TYPE=RANGE with HEX to denote a
hexadecimal range.

For a command request, HEX checks to be sure the data specified in the command
is really hexadecimal data. For a rule validation request, HEX checks for masking. If
there is no masking in the rule, the routine treats the rule like a command,;
otherwise, the routine builds an upper and lower range and checks both for
hexadecimal data. The routine treats masking in this case as numeric, with each
asterisk (*) occupying a decimal position.

Below is an example using no masking. The number portion must be a valid
hexadecimal digit.

Rule Operand Interpreted As
00000000
00000001

0000 00000000
0000000F

000F 0000000F

162 Command and Diagnose Limiting Guide

Transposition Routines

Below is an example of using an asterisk (*) for masking. The transposition routine
converts any operand with an asterisk to a low and a high range. It converts
character positions with an asterisk in the low range to zeros and converts
character positions with an asterisk in the high range to Fs.

Rule Operand

Interpreted As

0* 00000000-0000000F
1* 00000010-0000001F
5% 00000050-0000005F
1 00000010-00000F1F
**1 00000001-00000FF1
6** 00000600-000006FF

Below is an example of using a dash (-) for masking. The transposition routine
converts any operand with a dash to a low and a high range. The value before the
dash becomes the low range. The value after the dash becomes the high range. If
you omit the high range, then the high range defaults to the largest value that the
transposition routine can convert to a fullword.

Rule Operand

Interpreted As

4- 00000004-FFFFFFFF
400- 00000400-FFFFFFFF
14A000- 0014A000-FFFFFFFF
1F0-A00 000001F0-00000A00
191-19F 00000191-0000019F

E00000-FFFFFF

OOEOO0O00-OOFFFFFF

Below is an example of using a combination of asterisks and dashes for masking.

Rule Operand

Interpreted As

*5- 0000000005-FFFFFFFF
5%- 0000000050-FFFFFFFF
SH*- 0000000500-FFFFFFFF
Sk 0000050000-FFFFFFFF
1Hk*H 0000000100-000002FF

KGR KK Kk

0000000060-000FF4FF

Chapter 11

: Transposition Routines for Command Limiting 163

Transposition Routines

In the rule below, the first rule entry keeps anyone from setting an ADSTOP
between address 0 - FFFF. (Each * is a place holder.) The second rule entry keeps
anyone from setting an ADSTOP between 1000 and 1FFF. The first and second rule
entries effectively prevent a user from setting an ADSTOP below address 2000.

$KEY (ADSTOP)

*¥*x UID(*) PREVENT
1000-1FFF UID(*) PREVENT
- UID(*) ALLOW

For example, the hexloc operand of the ADSTOP command uses HEX routine.

HEXDATA

Processes hexadecimal input as character type data.

Refer to the HEX transposition routine above for operands with hexadecimal
arithmetic values.

The input string is validated for hexadecimal characters, then left-justified and
right-filled with hex zeros, if required. This string can be masked in a rule. Masked
strings are not allowed in commands. The string consists of an even number of
characters, each representing half a hexadecimal character. A trailing mask of a
dash fills the input string to an even number of characters, if required.

Below are examples of valid and invalid HEXDATA strings.

Rule Operand

Interpreted As

cicac3 Valid, no masking

cic*c3 Valid, with masking

cicz- Valid, with trailing "-" mask
cicac- Valid, with trailing "-" mask
ci1cac Invalid, odd number of characters
C1G2C3 Invalid, "G" is not valid

HHMM

During command syntax checking, HHMM converts hours and minutes to seconds.
It locates the delimiter (:) between the HH and MM, right justifies both hours and
minutes, then changes the value to seconds.

The routine checks for a mask that represents the valid time value during rules
validation. If you do not use masking, the routine treats the rule like a command. If
you do use masking, HHMM tries to find a delimiter in the mask (:). After finding the
delimiter, the routine builds an upper and lower range of seconds for both the
hours and minutes. If there is no delimiter, it converts the string to a seconds value.

164 Command and Diagnose Limiting Guide

Transposition Routines

HOSTSTRG

HOSTSTRG applies to XA operating systems only. It validates whether a STORE
command has a host or guest operand specified. The default is a guest machine. If
you did not specify a machine, the routine assumes guest.

STORE 520010 0000 HUGO THIS IS A TEST

In the above example, the routine returns HOST to the command interpreter
(denoted by H in the HUOO operand).

LDEV

LDEV validates that the first character of a logical device is always L and the rest of
the operand is a readable hexadecimal number. You can specify TYPE=RANGE with
LDEV to denote a range of logical devices.

For a command syntax check, the routine checks only the first character to ensure it
is an L. If not, then a syntax error occurs. If it is L, the HEX routine translates the
hexadecimal number. For rules validation, you can specify the first character of a
logical device address as a mask (*). For example, the LINES operand of the QUERY
command uses the LDEV routine.

LDEVXA

.LDEVXA ensures that operands begin with L. It allows as many positions in the
operand as specified in the syntax model, except that it limits the maximum
number of numeric positions in a segment to eight digits. You can use masking,
however, you cannot mask in ranges. The routine converts all values to binary for
comparison purposes.

Below is an example using no masking. You must prefix the operand with L. The
number portion must be a valid hex digit.

Rule Operand Interpreted As
Lo 0000000
L1 0000001
L0000 0000000
LA 000000A
LOOOA 000000A

This is an example of using an asterisk (*) for masking:

Rule Operand Interpreted As

L*1

0000001-00000F1

L1*

0000010-000001F

Chapter 11: Transposition Routines for Command Limiting 165

Transposition Routines

Rule Operand Interpreted As
L**1 0000001-0000FF1
L*1* 0000010-0000F1F
L1** 0000100-00001FF
L1*** 0001000-0001FFF
L***5 0000005-000FFF5
L**5* 0000050-000FF5F
L**55 0000055-00FF55
L*5** 0000500-00F5FF

Following is an example of using a dash (-) for masking. If you use a dash, it must be
the last byte.

Rule Operand Interpreted As

L- 0000000-FFFFFFF
L5- 0000005-FFFFFFF
L50- 0000050-FFFFFFF

Below is an example of using a combination of asterisks and dashes for masking. If
you use a dash, it must be the last byte.

Rule Operand Interpreted As

L*5- 0000005-FFFFFFF
L5*- 0000050-FFFFFFF
L5**- 0000500-FFFFFFF
Lo **x*- 0050000-FFFFFFF

166 Command and Diagnose Limiting Guide

Transposition Routines

LDEV Ranges:

The LDEV range technique provides more flexibility. You can use a dash as a range
character, not a masking character. There are two parts to a range: the low
segment and the high segment.

When using LDEV ranges, remember:

m You cannot mask in ranges.

m Each segment must start with L.

m The rest of the segment must contain valid hexadecimal numbers.

m The high segment must be greater in value than the low segment.

An example of LDEV ranges follows.

Rule Operand

Interpreted As

LO-LA

0000000-000000A

LOO00-LOO00A

0000000-000000A

L10-L1F 0000010-000001F

L10-L12 0000010-0000012

L12-L10 (illogical range)

L100-L1FF 0000100-00001FF

L100-L1FG (illegal character)

L*00-L1FF (masking not allowed)

L100-1FF (L missing from second segment)
LOO-LFF 0000000-00000FF

LOOO-LFFF 0000000-0000FFF

LOOOO-LFFFF

0000000-000FFFF

L1000-LFFFF

0001000-000FFFF

LOCALSYS

LOCALSYS converts an asterisk in a CSE-related command to the local system name
defined in CSESYS in HCPSYS (the name of the system the user is on). The routine
does not interpret an asterisk in the rule as the local system because it considers an
asterisk to be a single character mask. The routine translates the asterisk in a
command to the local system name before processing it against a command limiting
rule. This lets you write a rule for a specific system.

LOCALSYS works like an ANY transposition routine on non-XA systems. Test these
transposition routines on XA systems.

Chapter 11: Transposition Routines for Command Limiting 167

Transposition Routines

LPRT

LPRT accepts any operand as long as it is not greater than the maximum allowed
length of the operand. The value of the operand is accepted as entered in the
command syntax. When you use this operand with SPOOLOPT=SELECT, it selects
files from the spool queue.

For example, the value for the LPRT operand in the CHANGE command uses the
LPRT routine.

MINSIZE

During command syntax checking, MINSIZE validates that the operand conforms to
the syntax of MINSIZE=nnnK or MINSIZE=nnnM, where nnn is a valid storage size.
This transposition routine is identical to STRSIZE except that you must precede the
storage size with MINSIZE=. For more rule masking examples, see STRSIZE in this
appendix. All values are normalized to K-bytes before comparison.

Rule Operand Interpreted As
MINSIZE=512k 00000512
MINSIZE=512m 05242888 (k)
MINSIZE=1**k 00000100-00000199
MMSS

During command syntax checking, MMSS converts minutes and seconds to seconds.
It locates the delimiter (:) between the MM and SS, right justifies both minutes and
seconds, then changes the value to seconds.

The routine checks for a mask that represents the valid time value during rules
validation. If you do not use masking, the routine treats the rule like a command. If
you do use masking, MMSS tries to find a delimiter in the mask (:). After finding the
delimiter, the routine builds an upper and lower range of seconds for both the
minutes and seconds. If there is no delimiter, the routine converts the string to a
seconds value.

Rule Operand Interpreted As
>00:** 000 to 5400 sec
01:00 360 sec

0- 000 to 5400 sec
0*10 600 se

If you enter unmasked times in rules, the routine will not find a match.

168 Command and Diagnose Limiting Guide

Transposition Routines

PARMREGS

During command syntax checking, PARMREGS validates that the operand conforms
to the syntax of PARMREGS=n-n or PARMREGS=n, where n is a valid decimal value
with a maximum a two digits.

Rule Operand Interpreted As
PARMREGS=0 00
PARMREGS=6 06
PARMREGS=* 00-09
PARMREGS=4-8 04-08
PARMREGS=0-15 00-15
PERCENT

PERCENT validates and checks the syntax to ensure that the last character of the
operand is a percent sign. The routine transposes the percent sign to a null and
normal processing continues (for example, SET SRM IABIAS 10%).

When writing the rule, do not include the % character in the rule entry.

Below is an example using no masking. The number portion must be a valid decimal
digit.

Rule Operand Interpreted As
0 0000000000
1 0000000001
0000 0000000000
9 0000000009
0009 0000000009

Below is an example of using an asterisk (*) for masking. The transposition routine
converts any operand with an asterisk to a low and a high range. It converts
character positions with an asterisk in the low range to zeros and converts
character positions with an asterisk in the high range to nines.

Rule Operand Interpreted As

o* 0000000000-0000000009
1* 0000000010-0000000019
5* 0000000050-0000000059

Chapter 11: Transposition Routines for Command Limiting 169

Transposition Routines

Rule Operand

Interpreted As

1

0000000010-0000000919

**1

0000000001-0000000991

6**

0000000600-0000000699

Following is an example of using a dash (-) for masking. The transposition routine
converts any operand with a dash to a low and a high range. The value before the
dash becomes the low range. The value after the dash becomes the high range. If
you omit the high range, then the high range defaults to the largest value the
transposition can convert to a fullword.

Rule Operand

Interpreted As

4-

0000000004-2147483647

400-

0000000400-2147483647

12345-

0000012345-2147483647

1-100

0000000001-0000000100

256-512

0000000256-0000000512

40000-80000

0000040000-0000080000

Below is an example of using a combination of asterisks and dashes for masking.

Rule Operand

Interpreted As

*5_

0000000005-2147483647

5*-

0000000050-2147483647

o %_

0000000500-2147483647

DRk kok

0000050000-2147483647

LH* D **

0000000100-0000000299

KGR KKKk

0000000060-0000099499

PFKEY

PFKEY validates that the PF key number is between 01 and 24. For rule validation,
you can mask the PF key number. Examples of this are shown below. If you do not
mask the PF key number in the rule, the routine treats it like a command.

Rule Operand

Interpreted As

pfl

pfl

170 Command and Diagnose Limiting Guide

Transposition Routines

Rule Operand

Interpreted As

pf* pf01-pf09
pf** pf01-pf24
pf- pf01-pf24
pf-* invalid
pf*8 pf08-pf24
For example, the PF nn operand of the QUERY command uses the PFKEY routine.
RCUU

For a command request, RCUU validates that the real device address specified in
the command is really a valid hexadecimal number. You can specify TYPE=RANGE
with RCUU to denote a range of real device addresses.

For a rule validation request, RCUU checks for masking. If there is no masking in the
rule, the routine treats it like a command. Otherwise, it builds an upper and lower
range and checks both for hexadecimal data. Below is an example using no masking.
The number portion must be a valid hexadecimal digit.

Rule Operand

Interpreted As

0 00000000
1 00000001
0000 00000000
F 0000000F
00OF 0000000F

Below is an example of using an asterisk (*) for masking. The transposition routine
converts any operand with an asterisk to a low and a high range. It converts
character positions with an asterisk in the low range to zeros and converts
character positions with an asterisk in the high range to Fs.

Rule Operand

Interpreted As

o* 00000000-0000000F
1* 00000010-0000001F
5* 00000050-0000005F
1 00000010-00000F1F
**1 00000001-00000FF1
6** 00000600-000006FF

Chapter 11: Transposition Routines for Command Limiting 171

Transposition Routines

Below is an example of using a dash (-) for masking. The transposition routine
converts any operand with a dash to a low and a high range. The value before the
dash becomes the low range. The value after the dash becomes the high range. If
you omit the high range, then the high range defaults to the largest value that the
transposition routine can convert to a fullword.

Rule Operand

Interpreted As

4-

00000004-FFFFFFFF

400-

00000400-FFFFFFFF

14A000-

0014A000-FFFFFFFF

1FO-A00

000001F0-00000A00

191-19F

00000191-0000019F

E00000-FFFFFF

00E00000-00FFFFFF

Below is an example of using a combination of asterisks and dashes for masking.

Rule Operand

Interpreted As

*5_

0000000005-FFFFFFFF

5*-

0000000050-FFFFFFFF

5**_

0000000500-FFFFFFFF

DRk kok

0000050000-FFFFFFFF

1*E_Q*k*

0000000100-000002FF

*6*_**4**

0000000060-000FFAFF

For example, the rcuu operand of the ATTACH command, when specified a single
device address, uses the RCUU routine.

172 Command and Diagnose Limiting Guide

Transposition Routines

REST

RUR

REST validates that the length of all remaining command operands is not greater
than the allowed maximum. For example, the variable data operand of the
AUTOLOG command uses the REST routine.

(REAL)

RUR is the same as VUR (VIRTUAL) except that the routine scans the real device
block for the device class and type to make sure it is a real device. When you use
this operand with SPOOLOPT=SELECT, it selects files from the spool queue. Specify
the generic names of RDR, PRT, or PUN in the rule entry. When writing rules for
operands that use this transposition routine, use the following:

Rule Operand Interpreted As

*o any VUR device

p** any print or punch device
CON a console device
PRT|PTR a print device

PUN|PCH a punch device

RDR a reader device

ALL any or all devices

Do not use real device addresses, such as 00C (commonly a reader) in rules, instead
use RDR. The SPOOLOPT operand further restricts the use of any or all of these
devices. During rules validation, the operand mask indicates PRT, PUN, RDR, or CON
represents a generic type of unit record. We show some examples of this in the
next example.

Rule Operand Interpreted As
printer prt

reader rdr

00e (prt) prt

p- p-

SELF

In a command syntax check, if the operand is an asterisk (*), the routine translates
it to OWNER for rules validation. For rules validation, use the word OWNER to
indicate the user can specify the asterisk (*) operand in the command. When you
use SELF with SPOOLOPT=SELECT, it selects files from the spool queue. For example,
the * operand of the ATTACH command uses the SELF routine.

Chapter 11: Transposition Routines for Command Limiting 173

Transposition Routines

SPOOL

For a command syntax check, SPOOL validates that the data specified in the
command is really decimal data. When you use this operand with
SPOOLOPT=SELECT, it selects files from the spool queue.

For a rule validation request, SPOOL checks for masking. If there is no masking in
the rule, the routine treats the rule like a command. Otherwise, the routine builds
an upper and lower range and checks both for decimal data. For example, the
spoolid operand of the CHANGE command uses the SPOOL routine.

SPOOLTO

SPOOLTO validates that the data specified in the command is decimal data or the
END keyword. If you specify END, the routine converts it to 9999. When used with
SPOOLOPT=SELECT, it selects files from the spool queue.

STORADDR

For a command syntax check, STORADDR locates one of the three possible
delimiters: colon (:), dash (-), or period (.). Both the colon and dash indicate that the
value is a fixed range. The period delimiter means the routine adds the value after
the delimiter to the value before the delimiter. This results in a low-storage to
high-storage address range for the command.

For a rules validation, the routine locates the delimiter. When the command
delimiter is a dash, the routine validates that the dash is not the last character in
the rule entry. If it is the last character, the routine treats it as a masking character
for multiple characters during rule validation.

If the last character in the rule mask is not a dash, the routine checks the mask for
one of the other delimiters. After the routine locates the real command delimiter, it
converts the value before the delimiter to the low address and the value after the
delimiter to the high address to build an address range. It then matches this range
against the rules to validate execution of a command.

Rule Operand Interpreted As
0512.10 512 to FFFF
512 xk K 512 to FFFF

0*F 000 to OOF

0- 000 to 7FFFFFFF

For example, the hexloc options of the DCP command use the STORADDR routine.

STORDISP

STORDISP is the same as STORADDR, except that the routine justifies the upper and
lower address ranges to a 4-byte boundary. However, if you prefix the storage
address with a T, the routine justifies the range to a 16-byte boundary.

174 Command and Diagnose Limiting Guide

Transposition Routines

STORDUMP

STORDUMP is the same as STORADDR, except that the routine justifies the upper
and lower address ranges to a 32-byte boundary.

STORVDMP

STORVDMP is the same as STORADDR, except that the routine justifies the upper
and lower address ranges to a 4K-byte boundary.

STRSIZE

During command syntax checking, STRSIZE validates that the operand is between 0K
and 999M and checks for masking (* and -) and range values. If you use range
values, the last position must be either K or M, and the numeric part must be a valid
decimal number. You cannot mask range operands. The routine normalizes all
values to K-bytes.

For rules validation, the routine converts the storage size to a nnnnnK value. When
comparing to a rule mask, the routine uses a lower and upper range value. We
show some examples of this conversion below. First is an example with no masking

used.
Rule Operand Interpreted As
512k 0000512
512m 0000512 (Mb)
05242888 (converted to K)
740K 0000740

Some examples of this conversion with masking using an asterisk (*) are:

Rule Operand Interpreted As

1*k 0000010-0000019

1*M 0000010-0000019 (Mb)
0010240-0019456 (converted to K)

5*K 0000050-0000059

5*M 0000050-0000059 (Mb)
0051200-0060416 (converted to K)

5** 0000050-0000059 (low in K, high in Mb)
0000050-0060416 (converted to all K)

**1K 0000001-0000991

**1M 0000001-0000991 (Mb)

0001024-1014784 (converted to K)

Chapter 11: Transposition Routines for Command Limiting 175

Transposition Routines

Rule Operand

Interpreted As

*1*K

0000010-0000919

*1*M

0000010-0000919 (Mb)
0010240-0941056 (converted to K)

*1**

0000010-0000919 (low in K, high in Mb)
0000010-0941056 (converted to K)

*5%K

0000050-0000959

*5*M

0000050-0000959 (Mb)
0051200-0982016 (converted to K)

*5**

0000050-0000959 (low in K, high in Mb)
0000050-0982016 (converted to K)

1**K

0000100-0000199

1**M

0000100-0000199 (Mb)
0102400-0203776 (converted to K)

1***K

0001000-0001999

1***M

(error)

We show some examples of this conversion with masking using a dash (-) below.
The dash must be the last byte.

Rule Operand

Interpreted As

0000000-1022976

5-

0000005-0000999 (low in K, high in Mb)
0000005-1022976 (converted to K)

50-

0000050-0000999 (low in K, high in Mb)
0000050-1022976 (converted to K)

We show some examples of this conversion with masking using asterisk (*) and
dash (-) below. The dash must be the last byte.

Rule Operand

Interpreted As

5%-

0000050-0000999 (low in K, high in Mb)
0000050-1022976 (converted to K)

G k_

0000500-0000999 (low in K, high in Mb)
0000500-1022976 (converted to K)

Dkkkok

0050000-0000999 (low in K, high in Mb)
0050000-1022976 (converted to K)

176 Command and Diagnose Limiting Guide

Transposition Routines

Listed below are some examples of storage ranges. This preferred technique
specifies ranges of storage more easily. It lets you use a dash (-) as a range
character, not a masking character. You cannot mask in a range.

Rule Operand

Interpreted As

512-740K 0000512-0000740

512-740M 0000512-0000740
0524288-0757760 (converted to K)

5%2-740K (error, no asterisk mask permitted)

740-512K (error, illogical range)

3-5K 0000003-0000005

3-5M 0000003-0000005 (Mb)
0003072-0005120 (converted to K)

-M (error)

-K (error)

SYSNAME

SYSNAME scans the CSESYS table in HCPSYS to validate that a system name is a valid
CSE system name. A command fails with an CA ACF2 for z/ VM syntax error if the
system name or alias specified on a command is not in this list. When you specify a
valid system name or alias in the command, this transposition routine converts the
alias name into the system name. This lets you write rules for the system name
while protecting the alias name.

When you specify a valid system name or alias in a rule, this routine also converts
the alias name into the system name for the rule. If you write the rule for the alias
name, you also protect the system name. You can use a new pseudoname, LOCAL,
to write rules that apply only to the system the user is on. This is similar to using
OWNER when dealing with spool-related commands.

SYSNAME works like an ANY transposition routine on non-XA systems. Test these
transposition routines on XA systems.

USER

During a command syntax check, USER verifies that the user ID is greater than one
and less than (or equal to) eight characters. Except for CMDLIM rule compiles, it
also checks to ensure the specified user ID is in the VM directory. When you use this
operand with SPOOLOPT=SELECT, it selects files from the spool queue. For example,
the user ID operand of the QUERY command uses the USER routine. The routine
checks the VM directory to help determine the command format the user is using
so that CA ACF2 for z/ VM uses the correct FORMAT clause in the command model
during validation.

Chapter 11: Transposition Routines for Command Limiting 177

Transposition Routines

VCUuU

For a command request, VCUU validates that the data specified in the command is
really hexadecimal data. You can specify TYPE=RANGE with VCUU to denote a range
of hexadecimal data.

For a rule validation request, VCUU checks for masking. If there is no masking in the
rule, the routine treats the rule like a command. Otherwise, the routine builds an
upper and lower range and checks both for hexadecimal data.

Below is an example using no masking. The number portion must be a valid
hexadecimal digit.

Rule Operand Interpreted As
0 0000
1 0001
0000 0000
F 000F
000F 000F

Below is an example of using an asterisk (*) for masking. The transposition routine
converts any operand with an asterisk to a low and a high range. It converts
character positions with an asterisk in the low range to zeros and converts
character positions with an asterisk in the high range to Fs.

Rule Operand Interpreted As
o* 0000-000F
1* 0010-001F
5* 0050-005F
1 0010-0F1F
**1 0001-0FF1
6%* 0600-06FF

Below is an example of using a dash (-) for masking. The transposition routine
converts any operand with a dash to a low and a high range. The value before the
dash becomes the low range. The value after the dash becomes the high range. If
you omit the high range, then the high range defaults to the largest value that the
transposition routine can convert to a fullword.

Rule Operand Interpreted As

4-

0004-FFFF

178 Command and Diagnose Limiting Guide

Transposition Routines

Rule Operand Interpreted As
400- 0400-FFFF
14A0- 14A0-FFFF
1F0-A0O 01F0-0A00
191-19F 0191-019F

Below is an example of using a combination of asterisks and dashes for masking.

Rule Operand Interpreted As
*5- 000005-FFFF
5% 000050-FFFF
S¥*. 000500-FFFF
1¥EQ*H 000100-02FF
*pE-*ELX 000060-FF4F

For a rule validation request, VCUU checks for masking. If there is no masking in the
rule, the routine treats the rule like a command. Otherwise, the routine builds an
upper and lower range and checks both for hexadecimal data. For example, the
vaddr operand of the ATTACH command uses the VCUU routine.

VUR (VIRTUAL)

During command syntax checking, VUR converts the words (or abbreviation)
PRINTER, PUNCH, READER, or CONSOLE to PRT, PUN, RDR, or CON, respectively. It
also checks to ensure that the device is really a PRT or PUN. When you use this
operand with SPOOLOPT=SELECT, it selects files from the spool queue. For
examples and restrictions, see Spool Related Operands (Format 4) in the chapter
“Using the Model Setting.”

When writing rules for operands that use this transposition routine, use the

following:
Rule Operand Interpreted As
*o any VUR device
p** any print or punch device
CON a console device
PRT|PTR a print device
PUN|PCH a punch device
RDR a reader device

Chapter 11: Transposition Routines for Command Limiting 179

Transposition Routines

Rule Operand Interpreted As

ALL

any or all devices

Do not use real device addresses, such as 00C (commonly a reader) in rules, instead
use RDR. The SPOOLOPT operand further restricts the use of any or all of these
devices.

During rules validation, the operand mask indicates PRT, PUN, RDR, or CON
represents a generic type of unit record. We show some examples of this in the
next example.

Rule Operand Interpreted As
printer prt

ptr prt

00e (prt) prt

p- p-

XSIZE

This transposition routine looks for a trailing M to normalize the storage size
operand of the XSIZE command. If it finds one, it converts the decimal part of the
operand into a binary word so that command limiting can match everything up (for
example, ATTACH XSIZE 128000M).

Rule Operand Interpreted As
* any

o* OM-9M

1* 10M-19M

5* 50M-59M

1 010M-919M

180 Command and Diagnose Limiting Guide

Index

A

Access Permission
ALLOW parameter ® 26
command limiting rule ¢ 26
LOG operand » 26
PREVENT operand ¢ 26
ACF command
CMDLIM setting ¢ 49
COMPILE subcommand e 16, 51
DECOMPILE subcommand e 16, 54, 69
DELETE subcommand ¢ 16, 56, 70
diagnose limiting rule » 66
set
CMDLIM ¢ 49
MODEL » 144
STORE subcommand ¢ 16, 57, 70
TEST subcommand e 16, 58, 71
ACF diagnose code * 64
ACF2 diagnose code * 64
ACFFDR NOSPOOL default » 81
ACFRPTCL report e 17
Command Limiting Journal e 17
violations ¢ 63
ACFRPTDL report ¢ 99
ACFSERVE QUERY STATUS command limiting ¢ 19
ALL in SPOOLOPT clause * 129
ALLOW operand in access permission ¢ 26
ALLSPFIL transposition routine ¢ 157
ALLSYS transposition routine e 157
ALLURDEYV transposition routine ¢ 157
AMDISK operand of DIRMAINT keyword ¢ 103
another operand’s default format OPERAND clause
118, 122
ANY transposition routine ® 157
APREVADR in OPERAND clause » 129

C

class and destination spool file protection 89
class and form spool file protection « 86
CLASS keyword of TEST subcommand e 59
CLASS transposition routine ¢ 157

class, spool file protection ¢ 79, 83

CLASS=in FORMAT clause » 116

command limiting

access permissions ® 21, 26
ACF command ¢ 49
ACFSERVE QUERY STATUS » 19
COMPILE subcommand e 51, 152
components ¢ 16
control statements ¢ 21
controls ¢ 15
COUPLE command ¢ 42
CP considerations ¢ 19
DECOMPILE subcommand e 54
DEFINE command e 42
deleting * 56
DETACH command e 42
DIRMAINT e 99
environment criterion ¢ 16
insert MDL » 144
IPL command e 43
journal e 17
LINK command ¢ 44
masking ¢ 27
report e 17
rule entries » 21, 24
SET subcommand ¢ 46
SHUTDOWN command e 47
spooling subsystem e 75
STORE subcommand e 57
syntax e 21, 24
TEST subcommand ¢ 58
writing rules ¢ 19
command limiting definition 15
Command Limiting Journal e 17
COMMENT clause syntax model ¢ 109, 140
COMPILE subcommand
* operand ¢ 53
ACF command ¢ 16
at the terminal ¢ 51
CMDLIM setting ¢ 16, 50, 51
command limiting rule e 51, 152
diagnose limiting rule » 66
filename operand ¢ 53, 153
FORCE operand ¢ 53, 153
from a CMS file ¢ 52
LIST operand 53
MDLTYPE operand ¢ 153
MODEL setting » 144

Index 181

NOFORCE operand ¢ 53, 153
NOLIST operand ¢ 53, 153
NOSTORE operand ¢ 53, 153
STORE operand ¢ 53, 153
syntax ¢ 53, 153
components of command limiting rule » 16
CON in SPOOLOPT clause » 129
constants format in OPERAND clause ¢ 118, 119
Control Program (CP), limiting access ® 15
controlling
defaults « 95
NOSPOOL ¢ 79
spool file not found ¢ 79
syntax error processing ¢ 95
COPY transposition routine ¢ 157
COUPLE command ¢ 42
CP
Class G spooling subsystem e 75
commands
masking ¢ 27
spooling subsystem ¢ 75
transposition routines ¢ 18
Missing Object
spool file commands ¢ 75
spooling subsystem ¢ 75
CPSYSTEM transposition routine ¢ 157
CSE system transposition routine ¢ 157

D

DATA operand rule entries ¢ 24
DATE keyword of TEST subcommand e 59
DCP command e 38
DECIMAL transposition routine ® 157
DECOMPILE subcommand ¢ 69

* operand e 54, 155

ACF command ¢ 16

CMDLIM setting ¢ 16, 54

command limiting rule ¢ 54

INTO operand e 54, 155

LIKE operand e 54, 155

MDLTYPE operand e 54, 155

model operand ¢ 155

ruleid operand ¢ 54

sample ¢ 55

syntax ¢ 54
DEFAULT in OPERAND clause ® 129
defaults

ACFFDR « 81

overriding ¢ 95
DEFINE command e 42
DELETE subcommand
* operand e 155
ACF command e 16, 56
CMDLIM setting ® 16, 56
command limiting rule » 56
DIAGLIM setting ¢ 70
diagnose limiting rule ¢ 70
LIKE operand e 56, 155
MDLTYPE operand ® 56, 155
ruleid operand ¢ 56
syntax ¢ 56
DEST transposition routine e 157
DETACH command e 42
DEVNONLY in SPOOLOPT clause » 129
diagnose instruction * 63
diagnose limiting
access permissions ¢ 21
control statements ¢ 21
rule entries e 21
rule set
ACF subcommands ¢ 66
compiling ¢ 67
decompile ¢ 69
definition ¢ 63
deleting » 70
example ¢ 65
storing ¢ 70
testing e 71
syntax e 21
DIRMAINT Event Log ® 99
DISPLAY command e 38
DMCP command ¢ 38
DSNAME transposition routine e 157

E

effector operand format in OPERAND clause » 118,
123
END
COMMAND clause » 113
FORMAT clause » 116
GROUP clause » 140
end GROUP format in GROUP clause ¢ 134, 139

F

filename operand of COMPILE subcommand ¢ 53,
153

182 Command and Diagnose Limiting Guide

for

operand in rule entries ® 24
FORM transposition routine e 157
form, spool file protection ¢ 84

G

groups format in OPERAND clause ¢ 118, 120
guidelines

DIRMAINT rule writing ¢ 100

rule writing » 15

H

HEX transposition routine ¢ 157
HEXDATA transposition routine 157
HOSTSTRG transposition routine ® 157

Infostorage database diagnose limiting rule ¢ 63
interpretation control format in OPERAND clause e
118,127
INTO operand of DECOMPILE subcommand e 54, 69,
155
IPL
command ¢ 43, 112

J

journal
ACFRPTCL report 17
ACFRPTDL report ¢ 99
CP command violations ¢ 17
diagnose instruction violations ¢ 63

K

keyword

of TEST subcommand e 59
CLASS ¢ 59
DATE ¢ 59
LID e 59
OPERANDS e 59
SOURCE ¢ 59
TIME * 59
UID ¢ 59

operand format in GROUP clause ¢ 134, 136

L

label in GROUP clause ¢ 139
LDEV transposition routine ¢ 157

LDEVXA transposition routine ¢ 157
LID keyword of TEST subcommand e 59
LINK
command ¢ 44
LIST operand of COMPILE subcommand ¢ 53, 68
LOCALSYS transposition routine e 157
LOG operand in access permission ® 26
LPRT transposition routine ¢ 157

M

masking
chart e 27
command limiting rule ¢ 27
commands with passwords ¢ 37
CP command operand ¢ 27
example ¢ 28
numeric value operands ¢ 33
operand e 27
pseudo value operands ¢ 36
range value operands ¢ 34
rule « 28
UID string e 27
MATCH= in OPERAND clause ¢ 129
maximum-length in OPERAND clause ¢ 129
minimume-length in OPERAND clause ¢ 129
MINSIZE transposition routine ¢ 157
Missing Object
OACF » 64
ACF commands ¢ 91
ACF subcommands ¢ 49
ACF2 » 64
ALLOW « 113
ALLSPFIL » 157
ALLSYS ¢ 157
ALLURDEV e 157
AMDISK ¢ 103
AMDISK operand ¢ 103
another operand’s default format 118, 122
ANY e 157
APREVADR ¢ 129
BEGIN command » 113
CHANGE » 83, 84, 86, 87
CLASS ¢ 116, 157
CLASSES » 116
clause
ALL » 129
CON ¢ 129
DEVNONLY e 129

Index 183

PRT ¢ 129

PUN e 129

RADRONLY ¢ 129

RDR ¢ 129

SELECT ¢ 129
CMDISK 104
CMDISK operand ¢ 104
COMMAND clause » 113
command syntax ¢ 91
command-name ¢ 113

COMPILE subcommand ¢ 16, 50, 51, 53, 68, 144,

153
compiling » 107
components ¢ 109
constants e 129
constants format ¢ 118, 119, 129
CONTinue ¢ 129
controlling * 79
COPY o 157
COUPLE command ¢ 42
CP commands ¢ 18, 107
CPSYSTEM e 157
creation ¢ 144
DCP « 38
DECIMAL e 157
DECOMPILE subcommand ¢ 16, 54, 69, 155
default » 81
DEFAULT » 129
DEFINE command e 42
DELETE subcommand e 16, 56, 155
DELETE subcommand operand ¢ 56
description ¢ 107
DEST e 157
DETACH command e 42
device address default format e 122
DIRMAINT « 99, 100
DIRMAINT keyword ¢ 104
DMCP « 38
DSNAME e 157
ECHO command ¢ 113
effector operand format 118, 123
END ¢ 113, 116, 140
end GROUP format ¢ 134, 139
eTrust CA-ACF2 interface » 99
EXIT 129
EXITERR ¢ 129
FORM e 157
FORMAT clause » 116
format in GROUP clause » 134

formats e 117, 118, 134
GROUP clause » 139
groups format « 118, 120
HEX e 157
HEXDATA e 157
HOSTSTRG ¢ 157
in COMMAND clause » 113
in GROUP clause » 134
installation information ¢ 99
interpretation control format ¢ 118, 127
IPL
command ¢ 110
syntax e 110
IPL command ¢ 43, 112
keyword operand format 134, 136
KEYWORD operand of GROUP clause ¢ 139
label 139
LDEV e 157
LDEVXA e 157
LINK command ¢ 44
LOCALSYS e 157
LOG » 113
LPRT e 157
maintenance ¢ 99
masking ¢ 33, 34
MATCH « 129
maximum-length ¢ 129
MDLTYPE » 113
MDLTYPE= e 113
minimum-length ¢ 129
MINSIZE 157
Missing Object
KEYWORD e 139
OPTIONAL » 139
REQUIRED ¢ 139
MMSS e 157
modification ¢ 144
mutually exclusive format e 118, 126
NEXTFMT e 129
NOMATCH « 129
NONEXCL » 129
NOSPOOL « 113
NOSPOOL= ¢ 113
numeric value operands ¢ 33
NXTOPDEF 129
OCCURS » 129
OCCURS=+ 129, 139
operand ¢ 129
OPERAND clause » 129

184 Command and Diagnose Limiting Guide

operand of COMPILE subcommand e 153
operand of OPERAND clause ¢ 129
operand verb ¢ 129

OPERAND= 113

OPTIONAL » 129

OPTIONAL operand of GROUP clause » 139
optional operands ¢ 110

optional operands format ¢ 134
PARMREGS ¢ 157

PERCENT e 157

PFKEY e 157

philosophy ¢ 110

POSIX ¢ 64

PREVENT ¢ 113

PREVENT-LOG » 113

product levels » 107

pseudo value operands ¢ 36
PURGE e 83, 84, 86, 87

RANGE ¢ 129

range value operands ¢ 34

range values ¢ 34

RCUU ¢ 157

REPEATS ¢ 113, 116, 139
REQUIRED operand of GROUP clause ¢ 139
required operands format ¢ 134, 139
REST e 157

rule writing ¢ 100

RUR e 157

SELF ¢ 157

SET subcommand ¢ 46, 152
SHUTDOWN command e 47
SINGULAR ¢ 129

SPOOL » 83, 87, 89, 157

spool related format ¢ 118, 120
SPOOLOPT ¢ 129

SPOOLOPT= ¢ 129

SPOOLTO ¢ 157

SPTAPE « 83, 84

START e 83, 84, 86, 87

STCP « 38

STORADDR e 129, 157

storage type commands ¢ 38
STORDISP e 157

STORDUMP e 157

STORE subcommand ¢ 16, 57, 71
STORVDMP e 157

STRSIZE 157

subsystem e 75

suggested reading ¢ 100

SYNERR ¢ 113
SYNERR=¢ 113
syntax ¢ 109
syntax model ¢ 109, 112, 113, 116, 134
SYSNAME e 157
system, CP e 75
TEST subcommand ¢ 16, 50, 58
TRAN ¢ 129
TRAN= e 129
TRANSFER e 83, 84, 87, 89
transposition routine ¢ 157
transposition routines ¢ 33, 34, 38
TYPE ¢ 129
TYPE= e 129
KEYWORD e 139
OPTIONAL » 139
REQUIRED ¢ 139
USER e 157
value-clause * 129
variable
format » 118, 119
values ¢ 129
variables ¢ 129
VCUU e 157
verb description ¢ 113, 116, 129
verb descriptions ¢ 139
VUR ¢ 157
XSIZE » 157
MMSS transposition routine e 157
model operand of DECOMPILE subcommand ¢ 155
mutually exclusive format in OPERAND clause ¢ 118,
126

N

NEXTKEY operand rule entries * 24

no operand in TEST subcommand e 58

NOLIST operand of COMPILE subcommand ¢ 53, 68,
153

NOMATCH= in OPERAND clause » 129

NONEXCL in OPERAND clause » 129

NOSTORE operand of COMPILE subcommand e 53,
68, 153

NULL clause syntax model ¢ 109, 141

NXTOPDEF in OPERAND clause » 129

O

OPERAND in OPERAND clause » 129
OPERAND= in COMMAND clause ® 113

Index 185

operand-mask parameter in rule entries ¢ 24
operands

masking ¢ 27

numeric value ¢ 33

pseudo value ¢ 36

range value ¢ 34

repeating ¢ 38

VALUEFOR e 39
OPERANDS keyword of TEST subcommand ¢ 59

P

PARMREGS transposition routine 157
password commands, masking ¢ 37
PER command e 38
PERCENT transposition routine e 157
PFKEY transposition routine e 157
POSIX diagnose calls * 64
PREVENT operand in access permission ® 26
protection
by class and destination sample rules ¢ 89
by class and form sample rules » 86
by class sample rules ¢ 83
by form sample rules ¢ 84
by spool file owner sample rules ¢ 87
PRT operand of SPOOLOPT clause ® 129
pseudo
Missing Object
masking ¢ 36
transposition routines ¢ 36
operand ¢ 157
pseudoname, LOCAL ¢ 157
PUN operand of SPOOLOPT clause * 129

R

RADRONLY operand of SPOOLOPT clause ¢ 129
RANGE operand of OPERAND clause ¢ 129
RCUU transposition routine e 157
RDR operand of SPOOLOPT clause ¢ 129
repeating operands ¢ 38
Report generators

ACFRPTCL e 17

ACFRPTDL » 99

command limiting e 17

diagnose limiting ® 99
required operands format of GROUP clause * 134,

139

REST transposition routine e 157
RULE

entries
DATA operand ¢ 24
FOR operand ¢ 24
NEXTKEY operand e 24
operand-mask parameter ¢ 24
SHIFT operand 24
sorting ¢ 20
SOURCE operand ¢ 24
syntax e 24
UID operand ¢ 24
UNTIL operand » 24
matching environment ¢ 21
sorting
by operand mask ¢ 20
by SHIFT ¢ 20
by SOURCE e« 20
by UID e 20
by UNTIL|FOR e 20
criteria @ 20, 21
validation ¢ 20
writing
DIRMAINT « 100
guidelines ¢ 15, 100
operand defaults ¢ 39
repeating operands ¢ 38
rule set creation ¢ 50
rule set structure ¢ 19
special considerations ¢ 19
Syntax Model Command Language ¢ 107
transposition routines ¢ 33, 157
ALLSPFIL » 157
ALLSYS ¢ 157
ANY e 157
CLASS o 157
COPY o 157
CPSYSTEM e 157
DECIMAL e 157
DEST ¢ 157
DSNAME e 157
FORM e 157
HEX 157
HEXDATA o 157
HOSTSTRG ¢ 157
LDEV e 157
LDEVXA e 157
LOCALSYS » 157
LPRT e 157
MINSIZE e 157
MMSS e 157

186 Command and Diagnose Limiting Guide

PARMREGS ¢ 157

PERCENT e 157

PFKEY e 157

RCUU e 157

REST » 157

RUR ¢ 157

SELF 157

SPOOL e 157

SPOOLTO e 157

STORADDR e 157

STORDISP ¢ 157

STORDUMP e 157

STORVDMP e 157

STRSIZE ¢ 157

SYSNAME e 157

USER » 157

VCUU e 157

VUR e 157

XSIZE o 157

using command limiting ¢ 19

VM/SP spooling subsystem e 82
RUR transposition routine e 157

S

SELECT operand of SPOOLOPT clause ¢ 129
SELF transposition routine e 157
sensitive commands, suggested rules ¢ 42
SET subcommand ¢ 46

CMDLIM setting ¢ 49

command limiting rule e 152

diagnose limiting rule ¢ 66

MODEL setting e 144
SHIFT operand in rule entries ¢ 24
shutdown

command e 47
SINGULAR operand of OPERAND clause ¢ 129
sorting

by operand mask ¢ 20

by rule entry ¢ 20

by SHIFT ¢ 20

by SOURCE « 20

by UID * 20

by UNTIL|FOR ¢ 20

criteria » 20
SOURCE keyword of TEST subcommand ¢ 59
SOURCE operand in rule entries » 24
Spool file

attributes,spool queue name ¢ 78

BACKSPAC command e 75
CHANGE command e 75, 77
CLOSE command » 77
DEFINE command e 77
DRAIN command e 75
FLUSH command e 75
FREE command e 75
HOLD command ¢ 75
LOADBUF command e 75
LOADVFCB command e 77
LOGOFF command e 77
LOGON command ¢ 77
not found error ¢ 79
ORDER command e 75, 77
protection e 78, 82
by class ¢ 79, 83
by class and destination ¢ 89
by class and form ¢ 86
by form e 84
by spool file owner 87
PURGE command e 75, 77
QUERY command e 75, 77
REPEAT command e 75
SPACE command e 75
SPOOL command e 77
SPTAPE command ¢ 75
START command ¢ 75
TAG command ¢ 77
TRANSFER command ¢ 75
spool related format in OPERAND clause ¢ 118, 120
SPOOL transposition routine ¢ 157
SPOOLTO transposition routine ® 157
STCP command ¢ 38
STORDISP transposition routine ¢ 157
STORDUMP transposition routine e 157
STORE
command ¢ 38
operand of COMPILE subcommand e 53, 68, 153
subcommand e 70
ACF command e 57
CMDLIM setting ¢ 16, 57
command limiting rule 152
FORCE operand ¢ 57
NOFORCE operand e 57
of ACF » 16
sample ¢ 58
syntax ¢ 57
STORVDMP transposition routine ¢ 157
STRSIZE transposition routine ¢ 157

Index 187

suggested rules for sensitive commands ¢ 42
SYNERR= operand of COMMAND clause ¢ 113
syntax
COMPILE subcommand ¢ 53
DECOMPILE subcommand e 54
DELETE subcommand ¢ 56
ERROR
options ® 96
processing ¢ 95
for Shared File Systems ¢ 91
MODEL
COMMAND clause » 109, 113
command language description ¢ 107
COMMENT clause ¢ 109, 140
FORMAT clause » 109, 112, 116
GROUP clause ¢ 109, 112, 134
NEXTMDL clause * 109
NULL clause » 109, 141
OPERAND clause * 109
rule entries * 24
STORE subcommand ¢ 57
TEST subcommand ¢ 58
SYSNAME transposition routine e 157

T

TEST subcommand ¢ 71

* operand 58

ACF command e 16, 58

CLASS keyword ¢ 59

CMDLIM setting ¢ 16, 50, 58

DATE keyword ¢ 59

interpretation ¢ 62

keywords ¢ 59

LID keyword ¢ 59

MDLTYPE operand e 58

no operand ¢ 58

OPERANDS keyword ¢ 59

ruleid operand ¢ 58

sample ¢ 60

SOURCE keyword e 59

syntax e 58

TIME keyword e 59

UID keyword ¢ 59
TIME keyword of TEST subcommand ¢ 59
TRAN= operand of OPERAND clause ¢ 129

U

uiD

keyword of TEST subcommand ¢ 59
masking e 27
operand rule entries ¢ 24
UNTIL operand in rule entries » 24
USER
transposition routine ¢ 157
User Identification String (UID), masking ¢ 27

Vv

validation

CP command ¢ 15

diagnose execution ¢ 63

rules e 20
value-clause operand of OPERAND clause ¢ 129
variable format in OPERAND clause » 118, 119
VCUU transposition routine e 157
VM privilege classes, command limiting rule ¢ 75
VUR transposition routine ¢ 157

X

XSIZE transposition routine ¢ 157

188 Command and Diagnose Limiting Guide

	Contact CA Technologies
	Documentation Changes
	Contents
	Chapter 1: Introduction
	Audience
	Required Reading
	IBM Publications
	CA Publications

	Command Notation

	Chapter 2: Rule Writing Guidelines
	What Is Command Limiting?
	Components of Command and Diagnose Limiting
	Command Limiting Rules
	ACF Commands
	Command Models
	Command Limiting Journal
	Transposition Routines

	Who Can Write Command Limiting Rules?
	Command Limiting and CP Special Considerations
	Basic Rule Set Structure
	How Commands Are Validated
	Rule Entry Sorting
	Matching Environment Concept

	Syntax of a Rule Set
	Control Statements
	Access Environments
	Access Permissions

	Operand Masking Techniques
	Rule Masking Example
	IPL Command Syntax
	IPL Command Model
	Sample IPL Command Rule

	Rules for Operands that Have Numeric Values
	Rules for Operands That Have a Range
	Using Pseudo Operand Values in Rules
	Rules for Commands with a Password
	Rules for Storage Type Commands
	Rules for Repeating Operands
	Rules for Defaults from Other Operands (VALUEFOR)

	Using NEXTKEY
	Splitting Rule Sets

	Suggested Rules for Sensitive Commands
	COUPLE Command
	DEFINE and DETACH Command
	IPL Command
	LINK Command
	SET Command
	SHUTDOWN Command

	Chapter 3: Using the ACF Command (CMDLIM Setting)
	Creating a Rule Set
	ACF Subcommands
	COMPILE Subcommand
	Compiling Directly at the Terminal
	Compiling from a CMS File
	Syntax of the COMPILE Subcommand

	DECOMPILE Subcommand
	Syntax of the DECOMP Subcommand
	How to Use the DECOMP Subcommand

	DELETE Subcommand
	Syntax of the DELETE Subcommand

	STORE Subcommand
	Syntax of the STORE Subcommand
	How to Use the STORE Subcommand

	TEST Subcommand
	Syntax of the TEST Subcommand
	TEST Subcommand Keywords
	How to Use the TEST Subcommand
	How to Interpret TEST Results

	Chapter 4: Using the ACF Command (DIAGLIM Setting)
	Internal Diagnose Codes
	POSIX Diagnose Calls
	Sample Diagnose Limiting Rule Set
	Creating a Rule Set
	ACF Subcommands
	COMPILE Subcommand
	Compiling Directly at the Terminal
	Compiling from a CMS File
	Syntax of the COMPILE Subcommand

	DECOMPILE Subcommand
	Syntax of the DECOMP and LIST Subcommands

	DELETE Subcommand
	Syntax of the DELETE Subcommand

	STORE Subcommand
	Syntax of the STORE Subcommand

	TEST Subcommand
	Syntax of the TEST Subcommand
	TEST Subcommand Keywords
	Examples of TEST Subcommands
	TEST Subcommand Results

	Chapter 5: Command Limiting the CP Spooling System
	CP Commands That Affect Spooling
	Class D Spool File Commands
	Class G Spool File Commands
	Commands That Indirectly Affect Spooling

	Using Command Limiting to Protect Spool Files
	Spool File Attributes That Can Be Used in a Rule
	Choosing a Method of Spool File Protection
	Hierarchy of Options

	Using Command Limiting to Protect the Spool Queue
	Protection by Class
	Protection by Form
	Protection by Class and Form
	Protection by Spool File Owner
	Protection by Class and Target
	Protection by Destination

	Chapter 6: Command Limiting for Shared File System
	Command Syntax
	Variables

	Chapter 7: Controlling Syntax Error Processing for Command Limiting
	Overriding the Defaults
	Syntax Error Options
	Logonids That Should Have the SYNERR Logonid Field

	Chapter 8: VM Directory Command Limiting and Logging Support
	Important Installation Information
	Protecting the VM Directory in DirMaint
	Rule Writing Guidelines for the DirMaint command
	Compiling DirMaint Models
	Writing Initial Rules

	DirMaint Version 1 Release 5 and Above Command Syntax
	Commands with Special Rule Considerations
	Adding Minidisks (AMDISK)
	Changing Minidisks (CMDISK)

	Converting DirMaint Version 1 Release 4 Rules to Version 1 Release 5 and Above

	Chapter 9: Syntax Model Command Language
	Compiling Command Syntax Models
	Components of a Model
	Characteristics of a Command Model
	Notes on SMCL Clauses

	Elements of a Command Model
	COMMAND Clause
	COMMAND Start Syntax
	COMMAND End Syntax

	Verb Descriptions (COMMAND Clause)
	FORMAT Clause
	FORMAT Start Syntax
	FORMAT End Syntax

	Verb Descriptions (FORMAT Clause)
	NEXTMDL Clause
	Verb Descriptions (NEXTMDL Clause)
	OPERAND Clause
	Constant Operands (Format 1)
	Variable Operands (Format 2)
	Call GROUP Clause (Format 3)
	Spool Related Operands (Format 4)
	Device Address Default (Format 5)
	Effector Operands (Format 6)
	Mutually Exclusive Operands (Format 7)
	Interpretation Control (Format 8)

	Verb Descriptions (OPERAND Clause)
	GROUP Clause
	Optional Operands (Format 1)
	Keyword Operands (Format 2)
	Differences Between REPEATS and OCCURS
	Required Operands (Format 3)
	End GROUP (Format 4)

	Verb Descriptions (GROUP Clause)
	Differences Between REPEATS and OCCURS

	COMMENT Clause
	NULL Clause

	Chapter 10: Using the Model Setting
	Creating a Model
	Determine the Syntax of the Command
	Create a Test Syntax Model
	Guidelines for Writing Models
	Analysis of the VSNAP Model

	Compile the Model
	Create a Test Rule
	Test the Model
	Model Problem Support

	Activate Command Limiting

	Modifying a Model
	COMPILE Subcommand
	Modifying a Command Model

	The DECOMPILE Subcommand
	The DELETE Subcommand

	Chapter 11: Transposition Routines for Command Limiting
	Transposition Routines

	Index

